
Future Generation Computer Systems 84 (2018) 32–46

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Decentralized and locality aware replication method for DHT-based
P2P storage systems
Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, Öznur Özkasap *
Department of Computer Engineering, Koç University, İstanbul, Turkey

h i g h l i g h t s

• We propose a dynamic and fully decentralized locality aware replication algorithm.
• We propose a landmark-based locality aware name ID assignment algorithm.
• We optimized Skip Graph simulator SkipSim for large-scale performance analysis.
• Our approach GLARAS improves the access delay of public and private replications.
• Our approach LANS improves the locality awareness of name IDs.

a r t i c l e i n f o

Article history:
Received 19 November 2017
Received in revised form 2 February 2018
Accepted 3 February 2018
Available online 17 February 2018

Keywords:
Skip Graph
Distributed hash table
DHT
P2P cloud storage
Locality aware network for DHTs
Replication

a b s t r a c t

Skip Graph, a type of DHT, plays an important role in P2P cloud storage applications, where nodes publicly
or privately store, share, and access data. Nowadays P2P storage systems are widely using replication
to support data availability, reliability, and maintainability. With replication, the main consideration is
determining peers to replicate the data. Traditional replication algorithms are partially randomized and
employ rigid assumptions about nodes’ distribution. This results in high access delay between nodes and
their closest replicas, which degrades the system performance. We propose GLARAS , a dynamic and fully
decentralized locality aware replication method for Skip Graph. In contrast to the traditional algorithms,
which replicate based on strict assumptions about the distribution of nodes, GLARAS aims to approximate
the underlying distribution by interacting with a very small subset of nodes and minimize the average
access delay of replication accordingly. To ensure GLARAS performs at its best, we also propose a dynamic
fully decentralized landmark-based locality aware name ID assignment namely LANS . This ensures that
the nodes’ distances in the overlay and the underlying network are consistent with each other. Our
extensive experiments and analysis results demonstrate that compared to the best existing decentralized
locality aware replication, GLARAS improves the average access delay of public and private replications
by about 13% and 17%, respectively. Likewise, in comparison to the best existing decentralized locality
aware name ID assignment, LANS improves the locality awareness of name IDs and the end-to-end
latency of search queries in Skip Graph with the gains of about 19% and 8%, respectively. The average
replication’s access delay of a Skip Graph-based P2P storage system that employs GLARAS and LANS has
an improvement gain of about 2.7 over the best state-of-the-art algorithms. Since Skip Graph is a DHT,
any other DHT-based P2P storage service would benefit from our solution.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A peer-to-peer (P2P) storage system consists of peers (i.e.,
nodes) where each peer corresponds to a device in the real world
(e.g., smartphones, personal computers, servers). There are two
roles in a P2P cloud storage: data owner and data requester. A
data owner holds a set of data objects and intends to share them
with a certain subset of nodes: its corresponding data requesters.

* Corresponding author.
E-mail addresses: yhassanzadeh13@ku.edu.tr (Y. Hassanzadeh-Nazarabadi),

akupcu@ku.edu.tr (A. Küpçü), oozkasap@ku.edu.tr (Ö. Özkasap).

In a P2P storage system, each node can be both a data owner and
data requester of other data owners, simultaneously.

In a DHT-based P2P storage system [1–3], there exists a struc-
tured overlay topology where each node knows a small subset of
nodes (i.e., neighbors) in the system, and keeps their addresses
as (ID, address) pairs in a table named the lookup table of that
node. The predefined topology, accompanied by the lookup tables
of nodes, enables them to efficiently search for each other as well
as each other’s data objects in a fully decentralized manner.

Skip Graph [4] is a DHT-based routing infrastructure where
each node has two identifiers: a name ID and a numerical ID.
Name ID is a binary string and numerical ID is a non-negative

https://doi.org/10.1016/j.future.2018.02.007
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.02.007
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.02.007&domain=pdf
mailto:yhassanzadeh13@ku.edu.tr
mailto:akupcu@ku.edu.tr
mailto:oozkasap@ku.edu.tr
https://doi.org/10.1016/j.future.2018.02.007

Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46 33

integer. Connectivity patterns of Skip Graph nodes are determined
based on the common prefix length of their name IDs. Address of
a node is efficiently retrievable in a fully decentralized manner
by searching for either of its identifiers. The ability to perform
efficient, fully decentralized and concurrent search operations in
a scalable manner accompanied with the flexibility in the connec-
tivity patterns of nodes based on the name IDs emerge Skip Graph
as the routing infrastructure in many P2P applications including
P2P storage systems [5–8]. Likewise, Skip Graph can be used as an
alternative of other DHTs like Chord [9] in various P2P applications.

To reduce the query load on the data owner, provide data
availability and reliability, ease of accessibility, fault tolerance, and
maintainability, the data owner makes copies of its data objects
on some other nodes of the system, which are called the data
owner’s corresponding replicas [10–15]. In public replication,
every node is considered as a potential data requester. In private
replication, only a subset of nodes are the data requesters of a data
owner. While we do not discuss access control, it can be done via
encryption and key management for private replication scenarios.
After replication, each data requester queries the closest replica
to itself, i.e., the replica with the minimum access delay. We con-
sider the access delay of replication as the round-trip time (RTT)
between the data requester and the replica. The performance of a
P2P storage system in terms of query processing and response time
is highly correlated with the average access delay of replication
where for a specific data owner, the average is taken over all its
data requester nodes.

The traditional decentralized replication algorithms applica-
ble on a Skip Graph based P2P storage system are randomized
replication [16–22], replicating on a subset of data owner’s neigh-
bors [17,23–25], and replicating on the search path between the
data owner and some of its data requesters [26,27]. These replica-
tion algorithms aim at improving the average access delay of repli-
cation by making explicit rigid assumptions about the nodes’ dis-
tribution in the overlay network. Randomized replication assumes
a uniform distribution of data requesters in the overlay network,
replication on neighbors and replication on path assume a high
density of data requesters around the data owner or on search
paths to the data owner, respectively. The very major disadvan-
tage of all these traditional algorithms is that instead of trying to
adapt with the distribution of data requesters, theymainly go with
their explicit rigid assumptions. This brings a low average access
delay for the parts of the system that follow their assumptions
while enforces a considerably large average access delay on the
rest of the system. Consequently, the overall average access delay
of replication increases significantly, which degrades the system
performance. For example, randomized replication improves the
average access delay of replication in the parts of the system with
the uniform distribution of data requesters, while it almost fails in
the other parts.

Addressing the aforementioned problems, we propose a dy-
namic and fully decentralized locality aware replication algorithm
that is called Growing Locality Aware Replication Algorithm
for Skip Graph (GLARAS) to improve the average access delay of
replication in P2P storage systems. GLARAS enables locality aware-
ness by dividing the data requesters into subgroups and placing a
unique replica for each subgroup such that the minimum average
access delay between data requesters inside each subgroup and
their assigned replica is achieved. GLARAS is dynamic in the sense
that it can decide on the placement of replicas based on the current
system state. Likewise, it is fully decentralized and can be run by
any data owner locally. As the input, GLARAS needs only some
system-wide public information. In the case of private replication,
GLARAS also needs the name IDs of data requesters. Thismeans, the
data owner should know the nodes that will have private access to
its replicated data objects, which is a plausible assumption.GLARAS

aims at minimizing the average access delay in a churn-free Skip
Graph, where nodes are assumed to be online all the time and have
unlimited bandwidth and capacity. Availability, load balancing,
and capacity restrictions of nodes are orthogonal issues that we
plan to address in our future work. Furthermore, maintaining the
consistency of replicas is beyond the scope of this paper, and can
be addressed by, for example, [28]. GLARAS is applicable on top
of any prefix-based structured P2P cloud storage that defines data
owner and data requester roles. By prefix-based, wemean that the
neighboring relations are based on the common prefix length of
nodes’ identifiers. For example, GLARAS is applicable on P2P cloud
storages [29–31], which work on top of Kademlia [32] that is a
prefix-based DHT.

GLARAS works on top of a landmark-based locality aware name
ID assignment strategy. As name IDs indicate the neighboring
information of Skip Graph’s nodes, we define locality awareness
of name IDs as follows: the longer common prefix of nodes’ name
IDs in the overlay network corresponds to the lower pairwise
latency between them in the underlying network. Therefore, a Skip
Graph that is built on locality aware name IDs would benefit from
the improved end-to-end latency of search operations, which is
defined as the total pairwise latency of consecutive nodes on the
search path [33]. To improve the locality awareness of name IDs,
we propose a dynamic and fully decentralized landmark-based
locality aware name ID assignment algorithm that is called Locality
Aware Name ID assignment algorithm for Skip Graph (LANS).
Landmarks are not nodes of Skip Graph; they are just placed to
make the latency of nodes toward themmeasurable during the join
procedure and they donot have anymajor computation ormemory
overhead. LANS improves the query processing and response time
of the Skip Graph, and therefore any DHT-based P2P application
can also benefit from such a locality aware Skip Graph.

Our contributions are as follows:

• We propose GLARAS, a dynamic and fully decentralized
locality aware replication algorithm for Skip Graph.

• As an independent contribution, we propose LANS, a dy-
namic and fully decentralized locality aware name ID
assignment for Skip Graph.

• We optimized the Skip Graph simulator, SkipSim [34], to
support 4 times larger scale simulations (up to 4096 nodes),
implemented the best existing DHT-based identifier assign-
ment and decentralized replication algorithms on SkipSim,
and compared them with GLARAS and LANS, respectively.

• The simulation results show that compared to our previ-
ously proposed LARAS algorithm [35], which acts as the best
existing decentralized locality aware replication algorithm
for Skip Graph, GLARAS is much faster, and improves the
average access delay of public and private replications with
gains of about 13% and 17%, respectively.

• Based on the simulation results, compared to our previously
proposed DPAD algorithm [33], which acts as the best ex-
isting decentralized locality aware name ID assignment for
Skip Graph, LANS improves the locality awareness of name
IDs, and end-to-end latency of search queries in Skip Graph
with gains of about 19% and 8%, respectively.

• The average access delay of replication for a Skip Graph that
employs GLARAS and LANS is about 2.7 times better over
LARAS and DPAD.

In the rest of this paper, we discuss the related works in
Section 2. Our system model and the Skip Graph structure are
presented in Section 3.We present our proposed LANS algorithm in
Section 4. Our proposed GLARAS is presented in Section 5. Our sim-
ulation setup followed by the performance results are presented in
Sections 6 and 7, respectively. We conclude in Section 8.

34 Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46

2. Related works

2.1. Locality-based identifier assignments

2.1.1. Dynamic identifier assignments
In the dynamic identifier assignment strategies, the identi-

fier of a new node is assigned at the time it joins the system
by any node of the system, or by some specific nodes act as co-
ordinators. LAND [36,37] is a DHT-based identifier solution where
each node of the system can assign a random identifier to a new
node. In LDHT [38] the identifiers are binary strings of fixed length,
and have prefix and body parts similar to LANS where the prefix
part is the Autonomous System Number [39] of the node and the
body part is generated randomly by taking the hash of the node’s
IP address. Hierarchical identifier assignment [40] considers a
predefined division of the geographical space into regions, based
on the expected number of nodes.

Toda et al. [41] propose a locality aware name ID assignment
approach that assigns a randomized name ID to the new node
that joins the system. The initial randomized name IDs may later
be changed to provide better description of locality awareness. In
their proposed approach by joining a new node O(log n) name IDs
may be changed in expectation with high probability. Since name
IDs define the connectivity, the nodes with updated name IDs are
required to update their neighboring information, which enforces
a noticeable communication overhead in large system scales.

2.1.2. Static identifier assignments
To assign nodes’ identifiers, a static identifier assignment

needs the locality information of all the nodes in the system.
If another node joins the system, the static identifier assign-
ment algorithm should be re-executed with the updated locality
state of the system, which may change the identifier of some
nodes. This makes the static identifier assignments inefficient for
P2P applications. Landmark Multi-Dimensional Scaling (LMDS)
[42–44] scales down the nodes’ latency-based coordinate to a
single integer value, which is not in the format of the name IDs, and
needs extra refinements to be in the shape of name IDs. Likewise,
to provide locality awareness Geo-Peer [45] generates a Delau-
nay triangle [46] among each three neighbors based on Voroni
diagram [47]. Although Geo-Peer does not provide the locality
awareness as we define for Skip Graph, it follows the same goal as
LANS. As the result of applying Geo-Peer, each node is connected
to its closest neighbors in a fully decentralized manner. In Geo-
Peer neighbors of a node are determined based on the geograph-
ical location of the node, which results in sub-sets of nodes with
more than O(log n) neighbors. This violates the architecture and
efficiency of Skip Graph.

Table 1 represents a comparison between various DHT-based
identifier assignment strategies. We call an identifier assignment
dynamic, if it is able to assign the identifier of nodes at their
arrival time. A static identifier assignment needs all the nodes
to be available in the system to assign their name IDs. From the
decentralization point of view, an identifier assignment is full if
any node in the system can assign an identifier to another node.
An identifier assignment is hybrid if only some special nodes in the
system (e.g., coordinators) can execute the assignment algorithm.
From the locality awareness point of view, we consider an identi-
fier assignment as full, if it purely considers the locality information
of nodes. We call an identifier assignment hybrid if it applies some
kind of randomness in the assignment of identifiers. An identifier
assignment is not locality aware if it does not consider the locality
information of nodes.

2.2. Locality-based replication

2.2.1. Decentralized replication
In a decentralized locality-based replication algorithm, the

data owner places the replicas in a fully decentralized manner,
without the need to communicate with any special node as
the coordinator. There exist several decentralized locality-based
replication algorithms each considering a certain aspect of the
system:

Randomized replication algorithms place replicas uniformly
random [16], or by employing hash functions [17–22,49]. Random-
ized replication is suitable for P2P systemswith uniformly random
distribution of nodes in the underlying system where randomly
choosing replicas results in a low expected value of average access
delay.

In replication on path [27], the data owner places its replicas
on the search paths from some of the data requesters to itself.
LAR [26] replicates on the path between the data requester and the
data owner in an adaptive manner based on the traffic load that
each intermediate node on the search path tolerates. In general,
replication on path suits the cases where the data requesters are
distributed in disjoint dense regions. Replicating on the path that
passes through all those dense regions results in a low average
access delay of replication. However, in the case of public replica-
tion, or when the data requesters are scattered across the system,
dedicating all the replication degree on a few paths results in high
average access delay.

In replication on neighbors [17], a data owner places its repli-
cas on a subset of its neighbors. Using AURA [24], each node
frequently exchanges its state information such as available band-
width and load with its overlay neighbors. A data owner then
selects a subset of its neighbors with desirable properties as the
replicas. A greedy algorithm to find the nodes with higher repli-
cation potential based on certain metrics is proposed in [25].
Whenever a data owner wants to replicate, it sends the objective
function to its neighbors. Each neighbor evaluates the objective
function based on its own properties and compares the evaluated
value with its neighbors. If one node holds the best local value of
the objective function among its overlay neighbors, it announces
itself as a replication candidate to the data owner. Otherwise,
replication function evaluation continues on the neighbors recur-
sively. Rollerchain [23] divides the DHT nodes into groups based
on their availability information and distributes the data objects
among the groups. An assigned data object to a group is repli-
cated on every node inside that group. In general, replication on
neighbors helps most of the queries for the data owner’s objects
to be answered by its neighbors. Likewise, in non-locality aware
P2P systems where neighbors of a node are uniformly distributed
across the system, replication on neighbors results on placing
replicas randomly across the system. However, in locality-aware
P2P systemswhere nodes’ neighbors aremostly placed close to the
node, replication on neighbors results in the concentration of the
majority of replicas,which uplifts the average access delay of nodes
in the far away replica-free regions.

In addition to the P2P solutions, several replica placements
approaches with similar locality concerns are addressed in dis-
tributed data grids [50]. A Quality-of-Service (QoS) aware repli-
cation algorithm for data grid is presented in [51], where a dis-
tributed dynamic programming approach to maximize the QoS for
each data requester is proposed. The QoS metric in the presented
solution is a function of the number of hops between the data
requester and the closest replica. Although applying such an ob-
jective in our system reduces the traffic load and hence improves
the QoS, it nevertheless does not necessarily reduce the average
access delay of replication, since the number of hops between two
nodes in our system does not necessarily represent their end-to-
end latency. Periodic Optimizer [52] aims to improve the response

Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46 35

Table 1
Comparison of various methods of identifier assignment.

Method Behavior Decentralization Locality awareness

LAND [36,37] Dynamic Full No
LDHT [38] Dynamic Hybrid Hybrid
Hierarchical assignment [40] Dynamic Hybrid Hybrid
LMDS family [42,44,48] Static Hybrid Full
LANS Dynamic Full Full

time in distributed data grid by balancing the load of replicas that
improves the average available bandwidth. As mentioned earlier,
load balancing of replication is beyond the scope of this paper.

2.2.2. Centralized replication
The centralized replication algorithms are executed by some

coordinator nodes, which gather the state information of
all or some of the nodes in the system and replicate ac-
cordingly [11,53]. Some centralized replication algorithms are
multi-objective, and aim to optimize the quality of service, average
occupied bandwidth, access delay, and replication cost by a greedy
strategy [54] or modeling the replication as a multi-objective op-
timization problem [25,55,56]. Centralized replication algorithms
are subject to the single point of failure, and they enforce a notice-
able communication overhead, which makes them inappropriate
for P2P applications.

Table 2 presents a comparison of various locality-based repli-
cations. We call a replication algorithm fully decentralized if the
data owner can place its replicas without the help of any special
node (e.g., coordinator). From the locality awareness point of view
a replication algorithm is full, if it merely considers the locality
information of nodeswithout randomness. A replication algorithm
is hybrid if it considers some sort of randomness in the replica’s
placement. A replication algorithm is not locality aware if it ignores
the node’s locality information in replica’s placement. In terms
of behavior, a replication algorithm is dynamic if the data owner
can place its replicas at any arbitrary time with its local view of
the system. A replication algorithm has static behavior, if the data
owner needs to wait and obtain the global view of nodes to place
its replicas.

3. Preliminaries

3.1. System model

System capacity: In our view of a Skip Graph-based P2P storage
system, the system capacity is a constant that is denoted by n and
defined as the expected maximum number of nodes in the system.
In this paper, without loss of generality, we assume n is a power
of 2.

Skip graph nodes: Each node in the Skip Graph overlay repre-
sents a single peer in the real world. In our systemmodel, the Skip
Graph is churn-free [57] i.e., there is no arrival and departure of
nodes, and all the nodes are considered to be available all the time.
We assume that the Skip Graph nodes can communicate directly
with each other in the underlying network once they know each
other’s addresses. To efficiently find each other’s addresses, nodes
use the Skip Graph overlay to perform a search for numerical ID [4]
or a search for name ID [35].

Landmarks: In our systemmodel, we presume the existence of
some super nodes that are called landmarks. Landmarks are not
considered as nodes of the Skip Graph. The purpose of landmarks’
placement is to make the latency of nodes toward landmarks
measurable during the join procedure of nodes. Landmarks are not
supposed to carry major computation or memory overhead. In this
paper, we denote the set of all landmarks by L, and the size of L
that corresponds to the number of landmarks in the system by |L|.
We assume |L| = ⌈log n⌉, however in general LANS and GLARAS

are functional with any |L| of size O(log n). We tag landmarks in an
arbitrary fixed order from 1 to |L|, and place them according to the
expected density of nodes in the underlying system.We consider a
reverse correlation between the nodes’ density and their pairwise
latency in the underlying network, which is based on RTT. The high
density of nodes in an area corresponds to the high probability of
landmark existence there. The higher density of a group of nodes
implies their lower average pairwise latency in the underlying
network. The nodes’ density in the underlying network does not
necessarily correlate with their geographical locations.

Replication: We consider replication as the process of deter-
mining the place of the replicas. After the placement of replicas
is done, all data objects of the data owner are copied to each of
the replicas. We consider the data requesters as the authorized
set of nodes having access to these data objects. Access control
is a separate problem, which can be addressed for example by
encrypting the data objects of the data owner and distributing the
keys among the data requesters [58]. In our view of a P2P storage
system, every peer including the data requesters and even the data
owner itself is a potential replica candidate.

3.2. Skip graph

3.2.1. Structure
Skip Graph [4] is a decentralized routing infrastructure that

is considered as the distributed version of Skip List [59–61]. A
Skip Graph with n nodes has O(log n) levels, which are numbered
starting from zero. Fig. 1 shows a Skip Graph with 10 nodes and
4 levels where levels numbered from 0 to 3. Each Skip Graph
node has a unique numerical ID, a unique name ID, and exactly
one element inside each level. In Fig. 1, the nodes’ elements are
represented by squares with numerical IDs enclosed and name IDs
located at the bottom. Numerical ID is a non-negative integer and
name ID is a binary string of length O(log n) bits. In our Skip Graph
based P2P storage system, we consider the numerical IDs as the
hashed value of the corresponding peer’s IP address.

In level zero, all nodes are sorted based on their numerical IDs
in a doubly linked list. In upper levels, nodes are split into multiple
lists based on their name IDs. In general, in level i, there are 2i

doubly linked lists, and nodes that are located in the same list have
at least i-bit common prefix in their name IDs. For instance, in
level 2 of Fig. 1, there are 4 doubly linked lists, and nodes that are
located in each list have at least 2-bit common prefix in their name
IDs. For example, nodes with numerical IDs of 11, 41, 43, and 71,
which are placed in the same linked list, have at least 2-bit common
prefix in their name IDs. On the other hand, the only node with the
name ID prefix of 11 is the node with numerical ID of 93, which is
placed solely on a separate list of size one on level 2.

In a Skip Graph with the capacity of n nodes and O(log n) levels,
each node has at most two neighbors in each level and O(log n)
neighbors in total. In Fig. 1, left and right neighbors of the node
with numerical ID 43 in level zero are nodes with numerical IDs
of 41 and 67, respectively. Likewise, in both levels one and two,
the left and right neighbors of the node with numerical ID of 43
are nodes with numerical IDs of 41 and 71, respectively. Finally, in
level three, the node does not have any right neighbor and has a
left neighbor with numerical ID of 11.

36 Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46

Table 2
Comparison of various methods of replication strategies.

Strategy Decentralization Locality awareness Behavior

Randomized [16–22] Full No Dynamic
On Path [26,27] Full No Dynamic
On Neighbors [17,23–25] Full Hybrid Dynamic
Objective-based [54–56] No Full Static
GLARAS Full Full Dynamic

Fig. 1. An example Skip Graphwith 10 nodes and 4 levels. Each node has an element
in each level that is represented by a square. The integer value inside each element
is the corresponding node’s numerical ID. The binary string below each element is
its corresponding node’s name ID.

A Skip Graph can be employed as a DHT, by mapping each data
object to a Skip Graph node using a hash function [4]. A lookup
operation for a data item is done by a search for numerical ID with
the hashed value of that data object as the target numerical ID of
the search.

3.2.2. Search for numerical ID
Every node in the Skip Graph can initiate a search for a numer-

ical ID [4]. The node that initiates the search is called the search
initiator, and the numerical ID that the search initiator searches for
is called the search target. The search for numerical ID is done in a
fully decentralizedmanner. As the result of the search, the address
of the node with the greatest numerical ID less than or equal to
the search target is returned to the search initiator. For example, in
Fig. 1, as the result of a search for numerical ID of 11, the address
of the node with numerical ID of 11 is returned to search initiator.
However, a search for numerical ID of 33, which does not exist in
the SkipGraph, results in the address of the nodewith numerical ID
of 32 to be returned back to the initiator. 32 is the greatest available
numerical ID in the Skip Graph that is less than the search target.
Having n nodes in the Skip Graph, a search for numerical ID is done
by traversing O(log n) nodes in expectation with high probability.
Detailed descriptions and examples of the search for numerical ID
are available in [33].

3.2.3. Search for name ID
In our previous work, we proposed a search for name ID al-

gorithm [35] done in a fully decentralized manner by traversing
O(log n) nodes in expectation with high probability. As the result
of a search for name ID, the address of the node that owns the
most similar name ID to the search target is returned to the search
initiator. By similarity, we mean the name ID that has the longest
common prefix with the search target. For instance, a search for
name ID of 1010 initiated by any node results in the address of
the node with name ID of 1010 (and numerical ID of 41) to be

returned back to the search initiator. However, as the result of a
search for name ID of 0100, which does not exist in the Skip Graph,
one of nodes’ addresses with name IDs of 0110, 0101, or 0111 that
have the longest common prefix of 2 bits with the search target
is returned back to search initiator. The exact search result that is
returned depends on the search path starting from the initiator.
Our proposed GLARAS replication approach employs search for
name ID to map a replication candidate from its workspace to the
original P2P storage system. In a locality aware Skip Graph, all
possible search results for a name ID are the most suitable nodes
to the locality information that is described by the target name ID.
Hence from the locality point of view, all of the possible search
results are posed similarly in the underlying network to the search
target name ID, there is no coarse-grained discrimination among
them. Detailed descriptions and examples of the search for name
ID are available in [35].

4. Locality Aware Name ID assignment algorithm for Skip
Graph (LANS)

4.1. Algorithm overview

In our proposed Locality Aware Name ID assignment algorithm
for Skip Graph (LANS), every node and landmark is assigned a
latency-based coordinate as a tuple of size |L| where L corresponds
to the set of all landmarks in the system. The ith element of a
node’s (or a landmark’s) coordinate corresponds to its round trip
time toward the ith landmark of the system. The latency-based
coordinate system is hence determined by the landmarks and is
not necessarily of a specific shape e.g., rectangular. Every node
or landmark is able to efficiently compute its own latency-based
coordinate. Before any node arrives at the system, LANS assigns
a binary string of variable length to each landmark based on its
latency-based coordinate, which is called dynamic prefix. Using
LANS, a node’s name ID is composed of two parts: prefix and body.
The concatenation of prefix and body parts constitutes the name
ID of the node. The prefix part of a node’s name ID is the dynamic
prefix of the closest landmark to it. By the closest landmark, we
mean the one with the minimum latency toward the node. The
body part of a node’s name ID is computed based on its latency-
based coordinate.

Once a new node joins the system, it contacts each of the
landmarks and computes its own latency-based coordinate. Next,
the new node invokes LANS and computes its name ID by using its
latency-based coordinate. Every newnode should knowat least one
of the Skip Graph’s nodes, which is called the introducer of new
node. new node contacts its introducer for checking the availability
of its generated name ID. The introducer returns back the most
similar name ID (the one with the longest common prefix with
the generated name ID) that is not owned by any node in the
Skip Graph and hence is free to use by new node. Without loss
of generality, landmarks can keep the address of a few nodes
of Skip Graph. The new node can request the list from one of
the landmarks, pick one node from the list and contact it as its
introducer.

Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46 37

4.2. Algorithm description

4.2.1. Initialization
Based on the placement of landmarks, LANS considers a latency-

based coordinate for the node that executes it, as well as each
of the landmarks. The latency-based coordinate of each node or
landmark is denoted by a tuple of size |L| where L is the set of
landmarks. Eq. (1) illustrates the latency-based coordinate of node
jwhere coorj,i is the pairwise latency between node j and landmark
i in the system. The latency-based coordinate of landmarks is also
computed in the same way, by measuring their latency toward
each of the other landmarks.

coorj =
[
coorj,1 coorj,2 . . . coorj,|L|

]
. (1)

The initialization phase of LANS is done only once at the birth
time of the system, and before any node arrives. Based on the
landmarks’ placement, the system is divided into regions. Each
region is identified by a landmark and the set of nodes, which
have that landmark as their closest landmark. As a result of the
initialization phase of LANS, each landmark is assigned a dynamic
prefix based on the expected number of nodes in its region. The
assignment of dynamic prefixes provides a hierarchical distinction
among the regions. Since the initialization phase is a one-time
operation and the landmarks are assumed to be churn free, the
dynamic prefixes of landmarks never change. Dynamic prefixes
of landmarks hold the prefix property i.e., no dynamic prefix is a
prefix of another one. To generate the dynamic prefixes, we apply
a 2-mean clustering approach [62] recursively on the landmarks
set L based on the latency-based coordinate of landmarks. The first
recursion of the 2-mean clustering bisects the landmarks set into
two clusters; one with the dynamic prefix of 0, and the other one
with 1. The next recursion on each of these clusters results in at
most 4 clusterswith the dynamic prefixes of 00, 01, 10, and 11. This
recursive clustering continues until each cluster encloses exactly
one landmark. At that point, each landmark inherits the dynamic
prefix of its cluster. Based on the nature of 2-mean clustering, the
longer the prefix of a landmark is, the more nearby landmarks it
has in the latency-based coordinate system.

4.2.2. Name ID generation
When node j arrives at the system, it is supposed to know the

address of its introducer denoted by αj. Node j then invokes LANS
shown by Algorithm 4.1 . As the inputs, LANS receives the address
of node j, its introducer αj, and the set of all landmarks denoted by
L. The output of LANS is the name ID of node j, which is denoted by
nameIDj. On behalf of node j, LANS contacts each of the landmarks
by executing the contactLandmark function. On receiving address
of landmark i, contactLandmark returns the latency between node
j and landmark i that is denoted by coorj,i, the latency-based co-
ordinate of landmark i that is denoted by coori, and the dynamic
prefix of landmark i that is denoted by prefixi (Algorithm 4.1 Lines
1–2). Once all the landmarks are contacted, as shown by Eq. (1),
LANS constructs node j’s latency-based coordinate denoted by coorj
(Algorithm 4.1 Line 3).

Having the latency-based coordinate available, LANS finds the
closest landmark to node j as the one with the minimum corre-
sponding latency. The closest landmark to node j is denoted by
closestLand (Algorithm 4.1, Lines 4). To generate the body part of
node j’s name ID, LANS computes closestLandDiri, which is the nor-
malized direction vector between closestLand and each landmark i
in the system where i ̸= closestLand. Likewise, LANS computes the
nodeDiri, which is the normalized direction vector between node
j and each landmark i in the system where i ̸= closestLand. The
direction vector is computed based on the latency-based coordi-
nate of nodes and landmarks. For each landmark i, after computing
closestLandDiri and nodeDiri, LANS gauges the distance between

Algorithm 4.1: LANS
Input: Node j, introducer αj, set of landmarks L
Output: String nameIDj

// contacting landmarks to receive the latency toward them,
their coordinate, and prefix

1 for each landmark i ∈ L do
2 (coorj,i, coori, prefixi) = contactLandmark(i);
// constructing the latency-based coordinate of node j as an
array of the obtained coorj

3 construct coorj;
// finding the closest landmark to node j

4 closestLand = argmini{coorj,i};
// finding the best-matched landmark to node j

5 for each landmark i ∈ L except closestLand do

6 closestLandDiri =
coorclosestLand − coori

∥coorclosestLand − coori∥
;

7 nodeDiri =
coorj − cooricoorj − coori

 ;

8 diffi = ∥closestLandDiri − nodeDiri∥;
9 bestMatchedLand = argmini{diffi};
// generating the name ID for node j

10 body = prefixbestMatchedLand;
11 body = padBody(body, coorj,closestLand);
12 nameIDj = prefixclosestLand + body;

// checking for the availability of the generated name ID by
contacting node j’s introducer

13 nameIDj = αj.checkAvailability(nameIDj);

these two vectors, which is represented by diffi. The landmarkwith
the minimum diffi value is selected by LANS as the best matched
landmark, and is denoted by bestMatchedLand (Algorithm 4.1,
Lines 5–9).

Among all the landmarks in the system, the best-matched land-
mark to node j is the one that provides the best description of node
j’s latency-based positioning inside the region it is inscribed. LANS
initializes the bodypart of node j’s name IDwith the dynamic prefix
of the best-matched landmark to node j (Algorithm 4.1, Line 10).
To complete the rest of node j’s name ID, LANS invokes padBody
routine, which extends the body part to ⌈log n⌉ bits where n is
the system capacity. padBody fulfills the extension by adding the
⌈log n⌉−|body| leftmost bits of coorj,closestLand binary representation
to the body part where coorj,closestLand corresponds to the latency
between node j and its closest landmark (Algorithm 4.1, Line 11).
After the bodypart is constructed, LANS generates name IDnameIDj
by concatenating the prefixclosestLand and body parts (Algorithm 4.1,
Lines 12).

To prevent the name IDs duplication, LANS checks the avail-
ability of the generated name ID for node j by contacting αj. On
receiving the check for availability request, αj returns the most
similar name ID that does not belong to any node in the Skip Graph
(Algorithm 4.1, Line 13). checkAvailability conducts a search for
nameIDj [35], which returns back the address of the node that has
the longest common prefix with nameIDj in Skip Graph. If result’s
name ID is not identical to nameIDj, it conveys that nameIDj is not
held by any other node, and checkAvailability returns it. Other-
wise, checkAvailability decomposes nameIDj into prefix and body
parts. checkAvailability then concurrently checks the availability
of predecessors and successors of nameIDj, and returns the first
free to use predecessor or successor. Predecessor and successor
of a name ID have the same prefix part as the name ID, with
the integer value of body part one less and one more than the
name ID body part’s integer value, respectively. The availability of
predecessor and successors is checked by conducting a search for

38 Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46

their name IDs. It is important to note that since LANS considers
the body part of name IDs of size ⌈log n⌉ bits, there are 2⌈log n⌉

= n
possible predecessors and successors for a certain name ID on the
aggregate. Since n is considered as the expectedmaximumnumber
of nodes in the system, for a generated nameIDj, there always exists
one free to use predecessor or successor. Based on our simulation
results, for LANS to generate a name ID the average number of
searches that are conducted by checkAvailability is 4.18 where the
average is taken over 100 randomly generated systems each with
4096 nodes.

4.3. Comparison with our previous work

In our previous work DPAD [33] the dynamic prefix of land-
marks comes from the Huffman coding of their latency toward
one of the selected landmarks. Ignoring the pairwise delays be-
tween landmarks disadvantages the locality awareness of DPAD’s
dynamic prefixes in cases where landmarks have similar latency
toward the selected one, but different latency patterns toward
the rest. Likewise, in DPAD the latency toward the ith landmark
determines the ith bit of the name ID’s body part, which makes
the locality awareness of name IDs forcefully dependent to the
numbering of landmarks. To preserve the locality awareness in
larger system scales, DPAD requires the optimal numbering of
landmarks.

5. Growing Locality Aware Replication Algorithm for Skip
Graph (GLARAS)

5.1. Algorithm overview

GLARAS works on top of a Skip Graph that is furnished with a
landmark-based locality aware name ID (e.g., LANS). By executing
our dynamic and fully decentralized Growing Locality Aware Repli-
cation Algorithm for Skip Graph (GLARAS), a data owner places its
replicas in a way that the close to minimum average access delay of
replication is achieved. We define the average access delay as the
average of pairwise latency between each data requester and its
closest replica. The average is taken over all data requesters. The
exact minimum average access delay is achievable by collecting all
pairwise delays among the nodes of the system, which enforces
heavy traffic load and is not feasible in large scale systems. On the
other hand, the data owner who runs GLARAS needs to know only
the landmarks’ dynamic prefixes and replication degree i.e., the
number of replicas. In the private replication case, the data owner
also needs to know the name IDs of its data requesters. We as-
sume the set of landmarks’ dynamic prefixes as a publicly-known
constant. Replication degree is either a system-wide constant or is
determined based on parameters such as data owner’s preferences
and its membership tier.

To achieve the minimum average access delay of replica-
tion, GLARAS applies two levels of replica distribution known as
system-wide and region-wide distributions. In the system-wide
distribution (SWD), GLARAS distributes the total replication de-
gree to the regions of the system. The distribution is done based on
the approximated number of data requesters inside each region,
pairwise latencies among the landmarks, and the number of nodes
in the neighborhood of each region. As the result, each region
receives a non-negative sub-replication degree. After the system-
wide distribution is done, GLARAS executes the region-wide dis-
tribution of replicas for each region. In region-wide distribution
(RWD), GLARAS models the locality aware replication as an integer
linear programming (ILP) that uses the assigned sub-replication
degree of the region. As the result of RWD, the placement of
replicas in each region is determined. Once RWD is executed for

all the regions, the placement of replicas across the system is
accomplished.

RWD’s ILP model considers all possible name IDs inside a re-
gion as possible replica candidates. This results in the quadratic
dependency of problem size on the expectedmaximum number of
nodes in the system i.e., the system capacity. By the problem size,
we mean the number of decision variables as well as the number
of constraints of ILP. To tackle this situation and work efficiently,
GLARAS first maps the original system to a significantly smaller
size system, which is called virtual system. GLARAS then models
and solves ILP for each region of the virtual system, and maps the
determined replicas from the virtual system to the original one.
Once the mapping is done, the data owner receives its replicas’
name IDs and responses to its data requesters queries with the
list of replicas’ name IDs. Each data requester node finds its closest
replica from the list and queries that replica instead of contacting
the data owner directly. Since name IDs are supposed to be locality
aware, for a data requester the closest replica is the one with the
longest name ID’s common prefix. From the GLARAS point of view,
the data owner can be selected as a replica itself only if RWD
decides so. Otherwise, the data owner does not have to hold its
data objects after the replication is done.

A single run of GLARAS determines the set of replicas for the
data owner who executes it. If a data owner wants to share dif-
ferent sets of data objects with different sets of data requesters,
it needs to execute GLARAS once for each set of data requesters
separately.

5.2. Algorithm description

As shown by Algorithm 5.1, inputs of GLARAS are the set all
landmarks denoted by L, the replication degree denoted by R, the
set of data requesters’ name IDs denoted by KO, virtual system size
denoted by sizevs, and the maximum size of an ILP model that the
data owner can solve efficiently based on its computational power
denoted bymaxSize. In the case of public replication,KO is an empty
set, and hence GLARAS considers the whole possible name IDs as
tentative data requesters. In private replication case, however, KO

represents the name ID set of data requesters. The output ofGLARAS
is the set of replicas name IDs, which is denoted by repSet .

5.2.1. System-Wide distribution (SWD) (Alg-5.1, Line 1)
In the first step, GLARAS invokes SWD as a sub-routine. On

receiving L, R, and KO as inputs, SWD distributes the replication
degree among the regions and returns r , which is a vector of size
|L|where ri denotes the sub-replication degree associated with the
region i of the system (Algorithm 5.1, Line 1). ri represents the
number of replicas that should be placed in region i of the system.
The sub-replication degrees are non-negative integers,which sums
up to the original replication degree R of data owner.

We studied the optimal patterns of system-wide distribution
by examining all possible combinations of replica distribution (in
small scale) in 100 randomly generated topologies of 4096 nodes.
We realized that the optimal system-wide distribution follows a
cyclic behavior on a permutation of regions (i.e., landmarks). Once
the permutation is fixed, starting from the first region, the corre-
sponding sub-replication degree of regions in the permutation is
increased by one in a cyclic manner, until the original replication
degree is completely distributed among the regions. Following
this conclusion, SWD finds the permutation of regions that the
cyclic distribution results in close to the optimal distribution of
replicas among regions. If the original replication degree R of the
data owner is less than the number of regions, then some re-
gions toward the end of the permutation receive 0 sub-replication
degree. Otherwise, once each region is assigned a replica, SWD
restarts assigning the remaining ones from the beginning of the
permutation.

Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46 39

Algorithm 5.1: GLARAS
Input: set of landmarks L, replication degree R, set of data

requesters KO, virtual system size sizevs, maximum
size of ILP modelmaxSize

Output: replicas set repSet
// distributing the replication degree among the regions, and
obtaining the array r of sub-replication degrees

1 r = SWD(L, R, KO);
// mapping the original system to the virtual system, and
obtaining the set of data requesters as well as name IDs in
the virtual system

2 (K v, Iv) = toVirtual(n, L, KO, sizevs);
// placing the replicas in each region of the virtual system
based on its assigned sub-replication degree

3 for each region q ∈ virtual system do
4 bestScore = 0;
5 bestRepSet = ∅;
6 do

// solving the locality aware replication ILP and
obtaining the set of replicas in the region q of the
virtual system

7 vRepSet = RWD(rq, K v
q , Ivq);

// mapping replicas from region q of the virtual
system to the nodes in the original system

8 (accuracy, oRepSet) = toOriginal(vRepSet);
9 if accuracy × sizevs > bestAccuracy then

10 bestRepSet = oRepSet;
11 bestScore = accuracy × sizevs;

// removing the bad replication candidates based on
the obtained accuracy

12 (Ivq , status) = remBadCan(oRepSet, vRepSet, sizevs,

13 maxSize);
14 if status == growth then

// growing the virtual system size of region q and
extending its available name IDs accordingly

15 sizevs = sizevs × 2;
16 Ivq = expandNameIDs(Ivq);
17 while status ̸= terminate;
18 repSet = repSet ∪ bestRepSet;

To generate the close to optimal permutation of regions, SWD
places the landmark with the minimum total latency regarding
the rest of landmarks as the first in the permutation. The pairwise
latency of landmarks is obtained by contacting each landmark and
asking for its latency-based coordinate. The rest of the permuta-
tion is based on the positioning of regions with respect to each
other, their number of data requesters, and their latency with the
landmarks of regions that have been already placed inside the
permutation. For each landmark j, which has not been yet placed
in the permutation, SWD computes a score denoted by scorej. As
shown by Eq. (2), scorej is the summation of dataReqj, minLatencyj,
and closestCovj weighted by w1, w2, and w3, respectively.

scorej = (w1 × dataReqj)

+ (w2 × minLatencyj)

+ (w3 × closestCovj).

(2)

Eq. (2) is described in detail as follows.
Number of data requesters: dataReqj corresponds to the number
of data requesters in region j, which is normalized with the total
number of data requesters |KO

|. If the replication is private, the
number of data requesters inside region j is efficiently computable

by counting the name IDs inside KO that start with the dynamic
prefix of region j. Since the dynamic prefixes of regions are sup-
posed to hold the prefix property, the corresponding region of each
data requester is uniquely identified. In the case of public replica-
tion, every node inside a region is a tentative data requester. In this
case, number of data requesters inside each region is equal to the
number of nodes that region contains. However, since obtaining
the exact size of each region charges a noticeable communication
cost, and is also timely inefficient, SWD makes an approximation
of the number of data requesters based on the dynamic prefix
length of landmarks. In a landmark-based locality aware name ID
assignment (e.g., LANS) longer dynamic prefix of landmarks is a
sign of more populated corresponding regions for them. Therefore
in public replication case dataReqj corresponds to the dynamic
prefix length of landmark j, which is normalized with the total
dynamic prefix lengths of all landmarks in the system.

Minimum latency to the selected regions: minLatencyj de-
notes ratio of the minimum latency between landmark j and the
already selected landmarks in permutation, over the maximum
pairwise latency of landmarks.

Number of nearby regions: If the replication is public, then
closestCovj denotes the ratio of number of regions that have region
j as their closest region, over the total number of regions in the
system i.e., |L|. In the case of private replication, closestCovj denotes
the total number of data requesters inside the regions that have
region j as their closest region, which is normalized by the total
number of data requesters |KO

|.
In Eq. (2), wi corresponds to normalized hard-coded weights.

Benefiting from Eq. (2), SWD iteratively assigns a score to each of
the landmarks that have not been placed in the permutation, picks
the landmark with maximum score, places it into the next empty
place of permutation, and updates the score for the rest of not yet
selected landmarks based on their possibly changed minLatency
values.

5.2.2. Mapping to the virtual system (Alg-5.1, Line 2)
In large-scale systems, during the determination of the sub-

replication degree by SWD, there exists a large number of replica-
tion candidates inside each region. The ILP size ofGLARAS ’s region-
wide optimization presented in Section 5.2.3 has a quadratic de-
pendency on the expected number of nodes inside a region. Pro-
cessing a large number of nodes and deciding where to replicate
among them is timely inefficient and costly. To improve the run-
ning time, GLARAS constructs a significantly smaller size model of
the original system,which is called the virtual system. Original and
virtual system share the same set of landmarks. Hence, regions and
dynamic prefix of landmarks that correspond to each region are
identical in both systems. The only difference between the original
and virtual system is the body size of their name IDs, which for the
virtual system is shorter than the original one. The intuition behind
themapping is to stratify all possible name IDs inside each region of
the original system into cliques based on their similarity and map
each clique to themost similar name ID in that region of the virtual
system. By similarity between a clique in the original system and
a name ID in the virtual system, we mean the common prefix
length between the common prefix of nodes inside the clique and
the mapped name ID. For example, considering the name ID size
of original system as 4 bits and the virtual system as 2 bits, the
name IDs 1100, 1101, 1110, and 1111 in a region, which all have
the prefix of 11 in common, are mapped to the name ID of 11
in the same region of the virtual system. In addition to improv-
ing the running time, working on the virtual system lets the ILP
model of GLARAS to be solved efficiently without the need for the
relaxation.

40 Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46

GLARAS does the mapping by invoking the toVirtual function,
which on receiving the system capacity n, landmarks set L, set
of data requesters’ name IDs KO, and virtual system size sizevs,
creates a virtual system with the same set of landmarks but the
lower capacity of sizevs. It is worth to mention that sizevs is a local
parameter of the data owner, which is adjusted by the data owner
based on its computational power. Output of toVirtual is the set of
data requesters in the virtual system, which is denoted by K v

=

{K v
1 , K v

2 , . . . , K v
|L|} where K v

q is the set of data requester’s name IDs
in region q of the virtual system, as well as the set of all possible
name IDs in each region of the virtual system, which is denoted by
Iv = {Iv1 , Iv2 , . . . , Iv

|L|} where Ivq is the set of all possible name IDs in
the region q of the virtual system (Algorithm 5.1, Line 2).

If the replication is public, for each region qof the virtual system,
K v
q = Ivq , as each possible name ID is a possible data requester. In

the private replication case, however, toVirtual functionmaps each
data requester from KO to a name ID in the virtual system by re-
moving rightmost bits of the input name ID’s body part iteratively
until the size of body part becomes identical to the size of name ID’s
body part of the virtual system. With the capacity of n and sizevs
nodes, sizes of the name ID’s body parts of the original and virtual
systems are ⌈log n⌉ and ⌈log sizevs⌉, respectively. Hence, to map
a data requester node’s name ID from the original system to the
virtual system, toVirtual function removes its rightmost ⌈log n⌉ −

⌈log sizevs⌉ bits.

5.2.3. Region-Wide distribution (RWD) (Alg-5.1, Line 7)
After mapping to the virtual system is done, GLARAS invokes

RWD function on each region of the virtual system. Inputs of RWD
are the sub-replication degree of region q of the virtual system
rq, set of region q’s data requesters’ name IDs K v

q , and set of all
possible name IDs inside the region q of virtual system Ivq . RWD
aims to achieve the minimum average access delay of replication
by properly placing the replicas inside a region (Algorithm5.1, Line
7). The number of replicas for each region corresponds to the sub-
replication degree of that region, which is computed by SWD.

The placement of replicas in RWD is done based on ILP, which
models the locality aware replication. Eqs. (3)–(8) show the RWD’s
ILP model for region q of the virtual system. The only two decision
variables of the ILP model are X and Y . The X is a sizevs ×

⏐⏐K v
q

⏐⏐
binary matrix where Xi,j = 1 if and only if node i is assigned as the
corresponding replica for node j in the virtual system, otherwise
Xi,j = 0. Likewise, Y vector has size of sizevs where Yi = 1 if and
only if node i is selected as a replica, otherwise Yi = 0. In the
RWD’s ILP model C is a sizevs ×

⏐⏐K v
q

⏐⏐ table where Ci,j denotes the
length of common prefix in the name IDs of nodes i and j. In RWD’s
ILP model, body part of node i’s name ID in the virtual system is
generated by the binary representation of i in ⌈log sizevs⌉ bits. By
employing a locality aware name ID assignment strategy (e.g., LANS
), Ci,j reflects the pairwise latency between nodes i and j. Finally, rq
is the sub-replication degree of region q, which is obtained from
SWD.

min
sizevs∑
i=1

|Kv
q |∑

j=1

Ci,jXi,j, s.t. (3)

∀i ∈ Ivq , j ∈ K v
q Yi ≥ Xi,j (4)

∀j ∈ K v
q

sizevs∑
i=1

Xi,j = 1 (5)

∀i ∈ Ivq

|Kv
q |∑

j=1

Xi,j ≥ Yi (6)

sizevs∑
i=1

Yi = rq (7)

∀i ∈ Ivq , j ∈ K v
q Yi ∈ {0, 1}, Xi,j ∈ {0, 1}. (8)

Eq. (3) shows the objective function of the ILP model for region
q of the virtual system, which minimizes the average access delay
of replication in the region q. We define the average access delay
of replication as the average access delay between data requester
nodes and their closest replicas. When node i is assigned as the
corresponding replica of the data requester node j (i.e., Xi,j =

1), it contributes to the total access delay of region q by an ap-
proximation of Ci,j. The inner summation of Eq. (3) represents
the total latency between a single replica and its corresponding
set of data requesters. The outer summation represents the total
latency between all selected replicas and their corresponding data
requesters in region q of virtual system. RWD minimizes the total
latency between each node and its closest replica, which results in
minimizing the average access delay of replication.

Eq. (4) denotes the assignment’s constraint, which conveys that
if node i is assigned to the data requester j as its corresponding
replica (i.e., Xi,j = 1), then node i should be designated as a replica.

Eq. (5) represents the data requester’s constraint, which means
that a data requester node should be exactly assigned to one
replica. In column j of binary matrix X , summing up the Xi,j values
over all is results in the number of replicas that data requester j
benefits from, which should exactly be equal to 1.

Eq. (6) describes the replica’s constraint, which states that if
node i is designated as a replica, it should be assigned to at least
one data requester node as its corresponding replica. In binary
matrix X , summing up the Xi,j values over all js results in the
number of data requesters that are assigned to the node i as their
corresponding replica. If node i is a replica, then Yi = 1. Eq. (6) tells
that if node i is a replica, the number of data requester nodeswhich
are assigned to it should be at least one.

Eq. (7) shows the sub-replication degree constraint for region
q. In region q of the virtual system, Yi = 1 if and only if node i
is deputized as a replica. The number of 1s on the Y vector hence
corresponds to the number of replicas in the region q, which should
be exactly equal to the sub-replication degree of that region.

Eq. (8) denotes the allowed values for decision variables. The
only allowed values for Yi and Xi,j are either 0 or 1. Yi = 1 if and
only if node i is selected as a replica, otherwise Yi = 0. Likewise,
Xi,j = 1 if and only if node i is assigned as the corresponding replica
of the data requester j, otherwise Xi,j = 0.

After RWD solves the ILP model for region q of the virtual
system, it returns the replica set for that region denoted by vRepSet
(Algorithm 5.1, Line 7). The replica set is the set of all nodes i with
Yi = 1. Each Yi = 1 corresponds to a replica in the region q of the
virtual system. The name ID of node i in the region q of the virtual
system is determined as the concatenation of dynamic prefix of the
landmark q followed by the binary representation of i in ⌈log sizevs⌉

bits.

5.2.4. Accuracy-based iterations (Algorithm 5.1, Lines 8–17)
Upon receiving vRepSet from RWD, GLARAS invokes toOriginal

function on it. toOriginal function returns the most similar name
ID in the original system to each name ID in vRepSet , as well
as the accuracy of this mapping, which are denoted by oRepSet
and accuracy, respectively (Algorithm 5.1, Line 8). To construct
the oRepSet , toOriginal conducts a search for name ID of each
node i from vRepSet . The searches are conducted in the original
system. The search result for node i’s name ID is node i′ that has
the most similar name ID in the original system to the name ID
of node i. Likewise, toOriginal function computes the accuracy of
mapping node i from virtual system to node i′ in original system as

Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46 41

commonPrefix(i,i′)
|nameIDi|

where commonPrefix(i, i′) corresponds to the length
of common prefix between nodes i and i′ name IDs. The name
ID size of the virtual system is shorter than the original system.
Therefore, themaximum similarity between the name IDs of nodes
i and i′ is equal to the length of node i’s name ID. Eq. (9) shows
the mapping accuracy of vRepSet to oRepSet , which is denoted by
accuracy and defined as theminimum accuracy of nodes inside the
vRepSet .

accuracy = min
i∈vRepSet

{
commonPrefix(i, i′)

|nameIDi|
}. (9)

GLARAS considers a score of accuracy × sizevs for mapping
vRepSet to oRepSet . If the mapping score is the greatest score that
is met, oRepSet is kept as the best set of replication candidates
for region q of the virtual system (Algorithm 5.1, Lines 9–11).
To improve the mapping accuracy of replicas, GLARAS invokes
the remBadCan, which on receiving oRepSet , vRepSet , sizevs, and
maxSize, finds the replication candidates with accuracy less than
one, and marks them as bad candidates of replication. The bad
candidates are removed from the set of name IDs in region q of
virtual system i.e., Ivq . By calling remBadCan function, GLARAS ob-
tains the updated set of Ivq with bad candidates removed (Algorithm
5.1, Line 12). Additionally, in the updated set of Ivq , for each bad
candidate node i ∈ Ivq , remBadCan removes all nodes j ∈ Ivq
with commonPrefix(i, j) ≥ commonPrefix(i, i′) where i′ is the node
in original system with most similar name ID to node i. Since
there exists no name ID in the original system with greater than
commonPrefix(i, i′) bits common prefix lengthwith node i, all name
IDs with more than commonPrefix(i, i′) bits common prefix length
with node i are removed from the virtual system.

GLARAS repeats RWD on the updated Ivq , obtains the new set
of replicas for region q of the virtual system, maps the repli-
cas from virtual system to the original system, and updates Ivq
by removing the bad candidates. If a noticeable number of bad
replication candidates are removed, GLARAS expands the virtual
system size to support a bigger and more precise model of the
original system while preserving the computation time. If after
refining the bad candidates, size of Ivq breaks down to less than
the half of its full size (i.e.,

⏐⏐Ivq ⏐⏐ < sizevs
2), GLARAS doubles the

size of the virtual system, and extends the existing name IDs
in Ivq by invoking expandNameIDs (Algorithm 5.1, Lines 13–15).
expandNameIDs replaces each name ID in Ivq with two name IDs:
onewith a suffix of 0 and the otherwith a suffix of 1. The decision of
expanding the virtual system size is taken by remBadCan function.
To announce this decision, in addition to Ivq , remBadCan outputs
the status variable, which can take one of the possible values of
continue, growth, or terminate. A value of continue tells GLARAS to
repeat the RWD on the refined set of Ivq without any expansion.
A value of growth signals GLARAS that

⏐⏐Ivq ⏐⏐ < sizevs
2 , and it should

expand the virtual system size. A value of terminate tells that there
is no bad candidate to refine, or the ILPwas infeasible for RWD, and
GLARAS should conclude the replication for region q. The infeasibil-
ity occurs when due to the refinements the number of replication
candidates becomes less than the sub-replication degree of region
q that is

⏐⏐Ivq ⏐⏐ < rq. Lastly, if
⏐⏐Ivq ⏐⏐ > maxSize then remBadCan decides

on termination, where maxSize is the maximum size of ILP model
that the data owner can solve efficiently.

Once the replica selection for all regions is accomplished,
GLARAS returns repSet to the data owner. repSet represents the
finalized replica set for the data owner and contains the con-
catenation of bestRepSets that are collected from each region. On
receiving the replicas set from GLARAS, the data owner replicates
on the nodes of replicas list. After the replication is done, any
data requester can communicate the data owner asking for the
replica list. In response, the data owner sends back the list of replica

addresses as well as name IDs. The data requester node then finds
the replicawith themost similar name ID and contacts it instead of
contacting the data owner. SinceGLARAS works on top of a locality-
aware name ID assignment, the replicawith themost similar name
ID to a data requester is the replica with minimum access delay to
it.

5.3. Complexity

SWD part of GLARAS is done only once for the entire lifetime
of the system and consists of two nested loops each iterating |L|
times. Therefore, the running time of SWD is O(|L|2) = O(log2n)
where n is themaximumnumber of nodes in the system. For a fixed
sizevs, size of RWD’s ILP of GLARAS that is presented by Eqs. (3)–
(8) is O(size2vs). In our simulations with 100 randomly generated
topologies each with n = 4096 nodes, starting from the sizevs = 4
nodes, the virtual system size expansion occurred on average 2.72
times. This means that, on the average, RWD’s ILP is modeled for
the virtual system sizes of 4, 8, and 16nodes. It isworthmentioning
that the initial value of sizevs = 4 is crucial for GLARAS to function
properly with the size expansions.

In our storage system, we consider maxSize = O(log n) for all
the data owners that invoke GLARAS .maxSize is the computational
bound of the data owner on solving the RWD’s ILP model effi-
ciently, and GLARAS always considers sizevs ≤ maxSize. In public
replication case,

⏐⏐Kq
⏐⏐ = sizevs i.e., all the name IDs of region q of

the virtual system are considered as data requesters. In private
replication, however, a subset of name IDs inside each region q
of the virtual system is considered as data requesters i.e.,

⏐⏐K v
q

⏐⏐ ≤

sizevs. Combining these two cases makes
⏐⏐K v

q

⏐⏐ = O(sizevs) and the
size of RWD’s ILP objective function shown by Eq. (3) as O(size2vs).
Similarly, the ILPmodel has O(size2vs) constraints of the type shown
by Eq. (4), O(sizevs) constraints of the types shown by Eqs. (5)
and (6), one constraint of the type shown by Eq. (7), and O(size2vs)
constraints of the type shown by Eq. (8), which concludes the
size of RWD’s ILP model as O(size2vs). Since sizevs ≤ maxSize and
maxSize = O(log n), the RWD’s ILP model has the size of O(log2n).
This discussion derives that by providing O(log2n) ILP size, the
asymptotic running time of RWD remains polynomial in n even
when the ILP solver algorithm running time is exponential in n.
In our simulations, average sizevs was 1.33 × log n. In general,
RWD can replace the ILP model with its corresponding relaxed LP
version. However, with the shown behavior of sizevs, the problem
size is small enough that makes ILP plausible and consistent with
the RWD criterion.

The overall running time of GLARAS depends on the number
of RWD’s ILPs to be solved, which corresponds to the number of
while-loop iterations of GLARAS over RWD. The number of itera-
tions, in turn, depends on the number times that virtual system size
is expanded and the number of bad candidates that are removed. In
the worst case, the virtual system size experiences a growth from
4 tomaxSize as powers of two, with remBadCan function removing
only one bad replication candidate from Ivq at each execution. Since
virtual system size expansion follows a geometric pattern with
base 2, the number of times it expands until it crosses the bound
of maxSize is O(logmaxSize) = O(log log n). For a fixed virtual
system size sizevs, in the worst case remBadCan removes one bad
candidate per execution, which enforces GLARAS to iterate sizevs

2
times before the next virtual system size expansion. This forms a
geometrical series with the ratio of 2 and initial value of 4, which
after O(log log n) expansions sums up to total O(log n) iterations
over RWD.

42 Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46

5.4. Comparison with our previous work

In our previous work, we proposed LARAS [33] that in contrast
to GLARAS, distributes the replication degree among the regions
merely based on their expected number of data requesters. This
results in the concentration of replicas in condensed regions of data
requesterswhilemaking the scattered regions empty of the replica.
Likewise, in LARAS there exist no accuracy-based iterations, which
increases the average access delay of replication due to the mis-
match of virtual and original systems’ views of name IDs distri-
bution. Also, LARAS shrinks the original system size adaptively
based on the expected number of data requesters. Thismakes some
regions of the virtual system as big as the original system, which
negatively affects the running time of replication.

6. Simulation setup

6.1. Simulator

We developed a new version of the open source Skip Graph
simulator, SkipSim [34]. In comparison to the older version, the
new version is fully object-oriented with improvements in both
CPU and memory utilization. Each simulation consists of 100 ran-
domly generated topologies. The topologies are generated once,
stored, and loaded for each simulation. In SkipSim, each topology
is generated in a 7000 × 7000 points environment where the
pairwise latency between each pair of nodes is identical to their
Euclidean distance.

Each name ID assignment strategy is simulated with all 100
random topologies, and evaluated by the average latency of nodes
with their lookup table neighbors in the Skip Graph, as well as
the average end-to-end latency of search queries. To measure
the average end-to-end latency of searches, a number of random
searches for name IDs, as well as numerical IDs are initiated for
each topology. The randomness of a search is achieved by the
randomized selection of its search initiator and search target. The
average end-to-end latency of the searches for each topology is
computed, and the average over all the topologies is reported.

Each replication algorithm is likewise simulated with all 100
random topologies. For all replication simulations, name IDs of
nodes are generated by employing the LANS algorithm, which
performs as the best-decentralized locality aware name ID assign-
ment for Skip Graph. Each replication algorithm is simulated in
two modes: public replication and private replication. In public
replication, all nodes are considered as data requesters. In private
replication, for each topology, a fixed set of data requesters is
chosen randomly once, stored, and loaded with that topology. In
both public and private replications, for each topology, one data
owner is chosen randomly once, stored, and loaded alongside
the topology. The data owner executes the specified replication
algorithm. After the replicas are determined, the average access
delay between each data requester and its closest replica in each
topology is computed. As the replication algorithm’s performance,
the average access delay over all topologies is reported.

6.2. Algorithms used for comparison

6.2.1. Name ID assignments
We implemented the best known name ID assignment algo-

rithms and compared their performance with LANS in terms of
providing locality awareness and end-to-end latency of search
queries in Skip Graph. Implementation details of these algorithms
are as follows:

LAND: In LAND, name IDs are ⌈log n⌉ bits string, which are
chosen uniformly at random.

LDHT: The prefix part of nodes’ name ID in LDHT is the prefix of
the closest landmark to the node. Each landmark in LDHT defines
an ASN by a fixed size randomly assigned prefix. The body part
of name IDs are ⌈log n⌉ bits string, which are chosen uniformly at
random.

Hierarchical: Similar to LANS, prefix part of nodes’ name ID
is the dynamic prefix of the closest landmark to the node. The
body part of name IDs is chosen randomly as ⌈log n⌉ bits binary
strings.

LMDS: A Distance matrix of size n × |L| is generated where
Distance[i][j] corresponds to the pairwise latency between node i
and landmark j. The LMDS is applied on the Distancematrix, which
results in a single LMDSvalue for eachnode.Nodes are sorted based
on their LMDS value in ascending order. Name ID is the ⌈log n⌉ bits
binary representation of node’s rank in the sorted list.

Dynamic Prefix LMDS (DPLMDS): To compare with our pro-
posed LANS, we implemented an improved version of LMDS, that
is called DPLMDS. In DPLMDS, the prefix part of nodes’ name IDs
is the dynamic prefix of their closest landmark. The body part of
name IDs is obtained in the same way as LDMS.

6.2.2. Replication algorithms
We implemented the best known decentralized locality-based

replication algorithms and compared their performance in term
of average access delay with GLARAS . Implementation details of
these algorithms are as follows where in all cases the data owner
is chosen uniformly at random:

Randomized replication: A data owner is chosen uniformly
at random, and the replicas are chosen randomly from the set of
nodes including the data owner until the replication degree is met.

Replication on neighbors: A data owner is chosen randomly
from the set of nodes that have neighbors greater than or equal to
the replication degree. The replicas are chosen randomly from the
set of data owner’s neighbors until the replication degree is met.

Replication on path: Data requesters start searching for the
data owner’s numerical ID or name ID. On each search query,
replicas are placed on the path from the data requester node to the
data owner including both the data requester and the data owner,
until the replication degree is met.

Replication adaptively on path: We developed an improved
version of replication on the path for the sake of comparison,
which is called adaptive on path. In this improved version, the data
owner records the search path of all the search queries that are
destinated to it, and distributes its replication degree on the nodes
that contribute to the maximum number of search paths. During
the simulation of this algorithm, the data owner waits until all its
data requesters perform a search for name ID or numerical ID of the
data owner. The data owner picks the nodes with the maximum
number of contributions to the search paths and replicates on
them.

7. Performance results

7.1. Name ID assignments

Fig. 2 shows the performance of name ID assignment algorithms
in providing locality awareness for Skip Graph in different scales
of system capacity. As the locality awareness metric, we consider
the average latency of each node to its neighbors in Skip Graph.
The reported average is taken over all nodes of Skip Graph i.e., the
system capacity. LAND and LMDS that do not employ the prefix of
landmarks, act as the weakest ones. As the system capacity scales
up and hence the number of landmarks increases, the name ID
assignment algorithms that are based on the prefix of landmarks,
provide a finer grained hierarchical distinction among the nodes,

Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46 43

Fig. 2. Average latency of nodes to their neighbors in SkipGraph vs. systemcapacity.
Y -axis: average latency in seconds. X-axis: system capacity.

which results in improvement of locality awareness. LDHT con-
siders a fixed size static prefix for the landmarks that is indepen-
dent of their latency-based coordinate. This has the disadvantage
for LDHT in providing locality awareness among the landmark-
based name ID assignment approaches. Compared to DPAD that
acts as the best existing decentralized approach, LANS improves
the locality awareness of Skip Graph’s nodes with the gain of
about 19%.

Fig. 3 and 4 show the average end-to-end latency of search for
numerical ID and search for name ID that are resulted by employing
each of the name ID assignment strategies in the Skip Graph in
different scales of system capacities, respectively. We consider the
end-to-end latency of searches as the total pairwise latency of
consecutive nodes on the search path from the search initiator to
the search target. For each topology, 256 × n random searches for
numerical ID and name ID are initiated separately where n denotes
the system capacity. The average end-to-end latency of searches is
recorded for each topology, and the average of all topologies is re-
ported. Growing system capacity comes with the growing number
of nodes on the search path. Following the behavior of algorithms
in providing locality awareness (Fig. 2), as illustrated by Figs. 3
and 4, since average pairwise latency of nodes in LAND and LMDS
are almost independent of the system capacity, by increasing the
number of nodes on the search paths, their end-to-end latency of
searches increases. On the other hand, the landmark-based name
ID assignments have a decreasing pairwise latency of nodes. Hence,
in larger system capacities, although the number of nodes on the
search paths increases, the decreasing pairwise latency of nodes
on the search path results in improving their end-to-end latency
of searches. Compared to the hierarchical approach that performs
as the best existing solution in the search for numerical ID, LANS
improves the end-to-end latency of search for numerical ID with a
gain of about 5%. In the case of the search for name ID, compared to
the DPAD that performs as the best among the existing solutions,
LANS has a gain of about 10%.

7.2. Replication

Fig. 5 shows the public replication’s average access delay of
replication algorithms in the system capacity of 4096 nodes as
the replication degree is scaled up. In a locality aware Skip Graph,
the majority of a node’s neighbors are the ones with the lowest
pairwise latency. This causes the replication on the neighbors to
place themajority of replicas around the data owner, which results
in higher access delay for the far away data requester nodes. Due
to the locality awareness of Skip Graph, the expected pairwise
latency between consecutive nodes on a search path is low, which

Fig. 3. Average end-to-end latency of search for numerical ID in Skip Graph vs.
system capacity. Y -axis: average end-to-end latency in seconds. X-axis: system
capacity.

Fig. 4. Average end-to-end latency of search for name ID in Skip Graph vs. system
capacity. Y -axis: average end-to-end latency in seconds. X-axis: system capacity.

causes the compression of replicas in some parts of the system and
enforces higher access delay for rest of system. In comparison to
LARAS that acts as the best existing decentralized solution, GLARAS
improves the average access delay of public replication with a gain
of about 13%. We also simulated the replication algorithms in the
private replication mode with the fixed number of 400 randomly
chosen data requesters and observed a similar performance of
the replication algorithms as in the case of the public replica-
tion. Compared to LARAS that acts as the best existing decen-
tralized solution in the private replication case, GLARAS improves
the average access delay of private replication with the gain of
about 17%.

Fig. 6 illustrates the average number of replicas needed for the
replication algorithms in private replication mode to achieve the
maximum 1.5 s average access delay of replication in the system
capacity of 4096 nodes as the number of data requesters is scaled
up. As shown in this figure, almost all replication algorithms are
acting independently of the system capacity with GLARAS acting
as the best. Compared to LARAS that acts as the best existing
decentralized solution, GLARAS needs about 21% less number of
replicas to provide the maximum average access delay of 1.5 s in
private replication.

7.3. Running time

Running on Intel i5 2.60 GHz CPU and 8 GB of RAM, a single
execution of LANS in a system with 4096 nodes takes the average
computation time of about 1 s. To validate a generated name ID,

44 Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46

Fig. 5. Performance of replication algorithms in public replication mode. Original
system capacity is 4096 nodes. Y -axis: average access delay between each node and
its closest replica in seconds. X-axis: replication degree.

LANS conducts 4.18 searches for name IDs on the average. Based on
our simulation results, a single search for name ID in a systemwith
4096 nodes takes about 12 s on the average, whichmakes the total
communication time of LANS about 50 s. Having the computation
time of about 1 s and communication time of about 50 s, an arriving
node to the system can obtain its locality aware name ID in less
than one minute.

Likewise, using the lpsolve 5.5 [63] to solve the ILP model
of GLARAS, in a system with 4096 nodes and 12 landmarks the
average computation time of GLARAS to place a replica in a region
is about 5 s. GLARAS performs 4 searches for name IDs on the
average to place a single replica. Hence placing a replica in a region
costs the computation time of about 5 s and communication time
of about 48 s, which makes a data owner waiting for about 10
min to place all its 12 replicas in the system. On a quad core
Intel i5, which can support 4 concurrent executions of GLARAS ’s
RWD, this total average running time can be reduced to about
2 min by performing the placement of replicas in parallel for the
regions.

7.4. Comparison to our previous work

In the scale of 4096nodes, compared to our previously proposed
DPADname ID assignment algorithm [33], LANS is about 19% better
in providing the locality awareness of name IDs and improves the
average end-to-end latency of search querieswith the gain of about
13%. However, to assign a single name ID, LANS is about 2 times
slower compared to DPAD and charges the system with 3 more
searches for name IDs on the average. Compared to our previously
proposed LARAS replication approach [35], GLARAS is about 200
times faster. In the scale of 4096 nodes based on LANS name ID
assignment approach, GLARAS has the gain of about 13% and 17%
over LARAS in the public and private replications, respectively.
However, in contrast to LARAS which only needs one search for
name ID to place each replica, GLARAS needs the average of 4.21
searches to place a single replica. The average access delay of repli-
cation for a Skip Graph-based P2P storage system that is based on
GLARAS and LANS is about 2.7 times better in comparison to a Skip
Graph-based P2P storage system that is based on our previously
proposed LARAS and DPAD.

8. Conclusion

To improve the performance of Skip Graph based P2P stor-
age systems in terms of query processing and response time,
we proposed GLARAS, a dynamic and fully decentralized locality
aware replication algorithm for SkipGraph. UsingGLARAS, any data

Fig. 6. Number of replicas needed to achieve themaximum 1.5 s private replication
average access delay vs. number of data requester nodes in private replication
mode. Original system capacity is 4096 nodes. Y -axis: replication degree. X-axis:
number of data requester nodes.

owner can place its replicas where minimum average access delay
of replication is achieved. We define the average access delay of
replication as the average latency between each data requester and
its closest replica.

GLARAS works on the top of a Skip Graph that uses a landmark-
based locality aware name ID assignment. We define the locality
awareness of Skip Graph as assigning the name IDs such that the
latency between each pair of nodes in the system corresponds to
the common prefix length of their name IDswhere longer common
prefix denotes a lower latency. As an independent contribution,
we proposed a dynamic fully decentralized locality aware name ID
assignment called LANS.

To evaluate the performance of our proposed algorithms, we
optimized the Skip Graph simulator, SkipSim [34] to be scalable
up to 4096 nodes. We implemented LANS, GLARAS as well as state-
of-the-art identifier assignments and decentralized replications.
Compared to our previously proposed LARAS [35], which acts as
the best known existing decentralized locality aware replication
for Skip Graph,GLARAS improves the average access delay of public
and private replications with a gain of about 13% and 17%, respec-
tively. Likewise, in contrast to the best existing solutions on DHTs
that rely on the static explicit assumptions about the distribution
of nodes, GLARAS acts independently of the nodes’ distribution in
the underlying network.

In comparison to our previously proposed DPAD [33], which
acts as the best existing decentralized locality aware name ID
assignment for Skip Graph, LANS improves the locality awareness
of name IDs, and end-to-end latency of searches with the gains
of about 19%, 8%, respectively. As our future work, we aim to
minimize the average access delay of replication in a Skip Graph
under the churn considering the load and bandwidth constraint of
nodes.

Acknowledgments

The authors thank Türk Telekom for their support. We also
thank Amin Alizadeh for his contributions to the SkipSim imple-
mentation.

References

[1] Q. He, Z. Li, X. Zhang, Study on cloud storage system based on distributed
storage systems, in: ICCIS, IEEE, 2010.

[2] K. Hwang, S. Kulkareni, Y. Hu, Cloud security with virtualized defense and
reputation-based trust mangement, in: DASC, IEEE, 2009.

[3] K. Xu, M. Song, X. Zhang, J. Song, A cloud computing platform based on p2p,
in: ITIME, IEEE, 2009.

http://refhub.elsevier.com/S0167-739X(17)32697-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb1
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb2
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb3
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb3

Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46 45

[4] J. Aspnes, G. Shah, Skip graphs, Acm TALG (2007).
[5] M. Uddin, R. Stadler, A bottom-Up approach to real-time search in large

networks and clouds, in: NOMS, 2016 IEEE/IFIP.
[6] A. Singh, S. Batra, P-skip graph: An efficient data structure for peer-to-peer

network, in: Intelligent Distributed Computing, Springer, 2015.
[7] T. Shabeera, P. Chandran, S. Kumar, Authenticated and persistent skip graph: a

data structure for cloudbaseddata-centric applications, in: ICACCI, ACM, 2012.
[8] Y. Hassanzadeh-Nazarabadi, A. Küpçü, Ö. Özkasap, Awake: decentralized and

availability aware replication for p2p cloud storage, in: Smart Cloud, IEEE,
2016.

[9] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: A scalable
peer-to-peer lookup service for internet applications, ACM SIGCOMM (2001).

[10] W.Wu, J.C. Lui, Exploring the optimal replication strategy in p2p-vod systems:
Characterization and evaluation, IEEE Trans. Parallel Distrib. Syst. (2012).

[11] G. Liu, H. Shen, H. Chandler, Selective data replication for online social net-
works with distributed datacenters, IEEE Trans. Parallel Distrib. Syst. (2016).

[12] M. Almashor, I. Khalil, Z. Tari, A.Y. Zomaya, S. Sahni, Enhancing availability in
content delivery networks for mobile platforms, IEEE Trans. Parallel Distrib.
Syst. (2015).

[13] P. Matri, M.S. Pérez, A. Costan, L. Bougé, G. Antoniu, Keeping up with storage:
Decentralized, write-enabled dynamic geo-replication, Future Gener. Comput.
Syst. (2017).

[14] N.K. Gill, S. Singh, A dynamic, cost-aware, optimized data replication strategy
for heterogeneous cloud data centers, Future Gener. Comput. Syst. (2016).

[15] H. Mustafa, B. Baveja, S. Vijayan, S. Merchant, U.B. Desai, Replicating the ge-
ographical cloud: Provisioning omnipresence, omniscience and omnipotence,
Future Gener. Comput. Syst. (2015).

[16] J. Su, D. Reeves, Replica placement algorithms with latency constraints in
content distribution networks, in: Technical Report, ACM, 2004.

[17] S. Ktari,M. Zoubert, A. Hecker, H. Labiod, Performance evaluation of replication
strategies in dhts under churn, in: MUM, ACM, 2007.

[18] A. Harwood, D.E. Tanin, Hashing spatial content over peer-to-peer networks,
in: ATNAC, University of Melbourne, 2003.

[19] Z. Xiaosu, W. Xiaolin, H. Hao, Caching, replication strategy and implementions
of directories in dht-based filesystem, in: ICPCA 2011. IEEE.

[20] J. Paiva, L. Rodrigues, On data placement in distributed systems, Oper. Syst.
Rev. (2015).

[21] T. Pitoura, N. Ntarmos, P. Triantafillou, Replication, load balancing and efficient
range query processing in dhts, in: Advances in Database Technology-EDBT,
Springer, 2006.

[22] P. Knežević, A. Wombacher, T. Risse, Dht-based self-adapting replication pro-
tocol for achieving high data availability, in: Advanced Internet Based Systems
and Applications, Springer, 2009.

[23] J. Paiva, L. Rodrigues, Policies for efficient data replication in p2p systems, in:
IEEE ICPADS, 2013.

[24] T. Chang, M. Ahamad, Improving service performance through object replica-
tion in middleware: a peer-to-peer approach, in: IEEE P2P 2005.

[25] O. A.-H. Hassan, L. Ramaswamy, J. Miller, K. Rasheed, E.R. Canfield, Replication
in overlay networks: A multi-objective optimization approach, in:
Collaborative Computing: Networking, Applications and Worksharing,
Springer, 2009.

[26] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, P. Keleher, Adaptive replication
in peer-to-peer systems, in: Distributed Computing Systems 2004. IEEE.

[27] S. Androutsellis-Theotokis, D. Spinellis, A survey of peer-to-peer content dis-
tribution technologies, ACM CSUR (2004).

[28] S. Luo, M. Hou, S. Zhan, M. Lyu, M. Li, Consistency maintenance in replication:
A novel strategy based on diamond topology in cloud storage, Chin. J. Electron.
(2017).

[29] B. Cohen, Incentives build robustness in bittorrent, in: Workshop on Eco-
nomics of Peer-To-Peer Systems, 2003.

[30] Y.-Y. Teing, A. Dehghantanha, K.-K.R. Choo, L.T. Yang, Forensic investigation of
p2p cloud storage services and backbone for iot networks: Bittorrent sync as
a case study, Comput. Electr. Eng. (2017).

[31] R. Chaabouni, P. Garcia-Lopez, M. Sanchez-Artigas, S. Ferrer-Celma, C. Cebrian,
Boosting content delivery with bittorrent in online cloud storage services,
in: P2P, IEEE, 2013.

[32] P. Maymounkov, D. Mazieres, Kademlia: A peer-to-peer information system
based on the xormetric, in: InternationalWorkshop on Peer-To-Peer Systems,
Springer, 2002.

[33] Y. Hassanzadeh-Nazarabadi, A. Küpçü, Ö. Özkasap, Locality aware skip graph,
in: IEEE ICDCSW, 2015.

[34] SkipSim: https://gitlab.com/yhassanzadeh13/skipsim-distribution-bundle.

[35] Y. Hassanzadeh-Nazarabadi, A. Küpçü, Ö. Özkasap, Laras: Locality aware repli-
cation algorithm for the skip graph, in: IEEE NOMS 2016.

[36] I. Abraham, D. Malkhi, O. Dobzinski, Land: Locality aware networks for dis-
tributed hash tables, TR 2003-75, Leibnitz Center, The Hebrew University,
Tech. Rep.

[37] I. Abraham, D. Malkhi, O. Dobzinski, Land: stretch (1+ epsilon) locality-aware
networks for dhts, in: SODA, 2004.

[38] W. Wu, Y. Chen, X. Zhang, X. Shi, L. Cong, B. Deng, X. Li, Ldht: locality-aware
distributed hash tables, in: IEEE ICOIN 2008.

[39] G. Huston, Exploring autonomous system numbers, Int. Protoc. J. (2006).
[40] S. Zhou, G.R. Ganger, P.A. Steenkiste, Location-basednode ids: Enabling explicit

locality in dhts, Technical Report, Carnegie Mellon University, 2003.
[41] T. Toda, Y. Tanigawa, H. Tode, Autonomous and distributed construction of

locality aware skip graph, in: CCNC, IEEE, 2017.
[42] V. De Silva, J.B. Tenenbaum, Sparse multidimensional scaling using landmark

points, Stanford, Tech. Rep., 2004.
[43] S. Lee, S. Choi, Landmark mds ensemble, Pattern Recognit. (2009).
[44] U. Brandes, C. Pich, Eigensolver methods for progressive multidimensional

scaling of large data, in: Graph Drawing, Springer, 2007.
[45] F. Araújo, L. Rodrigues, Geopeer: A location-aware peer-to-peer system, in: 3rd

IEEE NCA, 2004.
[46] D.-T. Lee, B.J. Schachter, Two algorithms for constructing a Delaunay triangu-

lation, Int. J. Comput. Inf. Sci. (1980).
[47] F. Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric

data structure, ACM CSUR (1991).
[48] A. Allan, R. Humphrey, G.D. Fatta, Non-euclidean internet coordinates embed-

ding, in: 13th ICDMW, 2013. IEEE.
[49] V. Martins, E. Pacitti, P. Valduriez, Survey of data replication in p2p systems,

HAL, 2006.
[50] R. Mokadem, A. Hameurlain, Data replication strategies with performance

objective in data grid systems: a survey, Int. J. Grid Util. Comput. (2014).
[51] M. Shorfuzzaman, P. Graham, R. Eskicioglu, Allocating replicas in large-scale

data grids using a qos-aware distributed techniquewithworkload constraints,
Int. J. Grid Util. Comput. (2012).

[52] F. Ben Charrada, H. Ounelli, H. Chettaoui, An efficient replica placement strat-
egy in highly dynamic data grids, Int. J. Grid Util. Comput. (2011).

[53] A. Pace, V. Quéma, V. Schiavoni, Exploiting node connection regularity for dht
replication, in: IEEE SRDS, 2011.

[54] Y. Chen, R.H. Katz, J.D. Kubiatowicz, Dynamic replica placement for scalable
content delivery, in: Peer-To-Peer Systems, Springer, 2002.

[55] S.-Q. Long, Y.-L. Zhao,W. Chen,Morm: Amulti-objective optimized replication
management strategy for cloud storage cluster, J. Syst. Archit. (2014).

[56] A.S. Vijendran, S. Thavamani, An efficient algorithm for clustering nodes,
classifying and replication of content on demand basis for content distribution
in p2p overlay networks, Int. J. Comput. Commun. Technol. (2013).

[57] D. Yang, Y.-x. Zhang, H.-k. Zhang, T.-Y. Wu, H.-C. Chao, Multi-factors oriented
study of p2p churn, Int. J. Commun. Syst. (2009).

[58] R. Pecori, L. Veltri, 3akep: Triple-authenticated key exchange protocol for peer-
to-peer voip applications, Comput. Commun. (2016).

[59] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, Commun. ACM
(1990).

[60] T. Crain, V. Gramoli, M. Raynal, No hot spot non-blocking skip list, in: 33rd
ICDCS 2013. IEEE.

[61] M.T. Goodrich, R. Tamassia, A. Schwerin, Implementation of an authenticated
dictionary with skip lists and commutative hashing, in: DISCEX 2001. IEEE.

[62] J. Qin, W. Fu, H. Gao, W.X. Zheng, Distributed k-means algorithm and fuzzy c-
means algorithm for sensor networks based on multiagent consensus theory,
IEEE Trans. Cybern. (2017).

[63] lpsolve5.5: http://lpsolve.sourceforge.net/5.5/.

Yahya Hassanzadeh-Nazarabadi is a Ph.D. Candidate in
the Department of Computer Engineering at Koç Univer-
sity. His research interests are distributed cloud storage,
P2P systems, replication and security.

http://refhub.elsevier.com/S0167-739X(17)32697-3/sb4
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb6
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb7
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb8
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb9
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb10
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb11
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb12
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb13
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb14
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb15
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb17
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb17
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb17
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb18
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb18
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb18
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb20
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb21
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb22
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb25
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb27
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb28
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb30
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb31
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb32
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb32
https://gitlab.com/yhassanzadeh13/skipsim-distribution-bundle
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb39
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb41
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb43
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb44
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb46
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb46
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb46
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb47
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb47
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb47
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb50
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb50
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb50
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb51
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb51
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb51
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb51
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb51
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb52
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb52
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb52
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb54
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb54
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb54
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb55
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb55
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb55
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb56
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb56
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb56
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb56
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb56
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb57
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb57
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb57
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb58
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb58
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb58
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb59
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb59
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb59
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb62
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb62
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb62
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb62
http://refhub.elsevier.com/S0167-739X(17)32697-3/sb62
http://lpsolve.sourceforge.net/5.5/

46 Y. Hassanzadeh-Nazarabadi et al. / Future Generation Computer Systems 84 (2018) 32–46

Alptekin Küpçü received his Ph.D. degree from Brown
University Computer Science Department in 2010. Since
then, he has been working as an assistant professor at Koç
University, and leading the Cryptography, Security & Pri-
vacy Research Group he has founded. His research mainly
focuses on applied cryptography, and its intersection with
cloud security, privacy, peer-to-peer networks, and game
theory and mechanism design. Dr. Küpçü has various ac-
complishments including 3 international patents granted,
7 funded research projects (for 5 of which hewas the prin-
cipal investigator), 2 European Union COST Action man-

agement committee memberships, 2 Koç University Teaching Innovation Awards,
Science Academy Young Scientist Award (BAGEP), Turkish Academy of Sciences
Outstanding Young Scientist Award (GEBİP), and the Royal Society of UK Newton
Advanced Fellowship.

Öznur Özkasap received the M.S. and Ph.D. degrees in
Computer Engineering from Ege University, Izmir, Turkey,
in 1994 and 2000, respectively. From 1997 to 1999, she
was a Graduate Research Assistant with the Department
of Computer Science, Cornell University, Ithaca, NY, USA,
where she completed her Ph.D. dissertation. She is cur-
rently anAssociate Professorwith theDepartment of Com-
puter Engineering, Koç University, Istanbul, Turkey, which
she joined in 2000. Her research interests include dis-
tributed systems, multicast protocols, peer-to-peer sys-
tems, bioinspired distributed algorithms, mobile ad hoc

networks, energy efficiency, cloud computing, and computer networks. She serves
as an Area Editor of the Future Generation Computer Systems journal, Elsevier
Science. She also served as an Area Editor of the Computer Networks journal,
Elsevier Science, and as a Management Committee Member of the European COST
Action IC0804: Energy efficiency in large-scale distributed systems.

	Decentralized and locality aware replication method for DHT-based P2P storage systems
	Introduction
	Related works
	Locality-based identifier assignments
	Dynamic identifier assignments
	Static identifier assignments

	Locality-based replication
	Decentralized replication
	Centralized replication

	Preliminaries
	System model
	Skip graph
	Structure
	Search for numerical ID
	Search for name ID

	 Locality Aware Name ID assignment algorithm for Skip Graph (LANS)
	Algorithm overview
	Algorithm description
	Initialization
	Name ID generation

	Comparison with our previous work

	 Growing Locality Aware Replication Algorithm for SkipGraph (GLARAS)
	Algorithm overview
	Algorithm description
	System-Wide distribution (SWD) (Alg-5.1, Line 1)
	Mapping to the virtual system (Alg-5.1, Line 2)
	Region-Wide distribution (RWD) (Alg-5.1, Line 7)
	Accuracy-based iterations (Algorithm 5.1, Lines 8–17)

	Complexity
	Comparison with our previous work

	Simulation setup
	Simulator
	Algorithms used for comparison
	Name ID assignments
	Replication algorithms

	Performance results
	Name ID assignments
	Replication
	Running time
	Comparison to our previous work

	Conclusion
	Acknowledgments
	References

