
Incentivized Outsourced Computation
Resistant to Malicious Contractors

Alptekin Küpçü ,Member, IEEE

Abstract—With the rise of Internet computing, outsourcing difficult computational tasks became an important need. Yet, once the

computation is outsourced, the job owner loses control, and hence it is crucial to provide guarantees against malicious actions of the

contractors involved. One may want to ensure that both the job itself and any inputs to it are hidden from the contractors, while still

enabling them to perform the necessary computation. Furthermore, one would check that the computation was carried out correctly.

In this paper, we are not concerned with hiding the job or the data, but our main task is to ensure that the job is computed correctly.

We also observe that not all contractors are malicious; rather, majority are rational. Thus, our approach brings together elements from

cryptography, as well as game theory and mechanism design. We achieve the following results: (1) We incentivize all the rational

contractors to perform the outsourced job correctly, (2) we guarantee high fraction (e.g., 99.9 percent) of correct results even in the

existence of a relatively large fraction (e.g., 33 percent) of malicious irrational contractors in the system, (3) and we show that our

system achieves these while being almost as efficient as running the job locally (e.g., with only 3 percent overhead). Such a high

correctness guarantee was not known to be achieved with such efficiency.

Index Terms—Outsourced computation, cloud computation, crowdsourcing, malicious contractors, fair payments

Ç

1 INTRODUCTION

INTERNET computing is an important field, both for aca-
demic research, and for the industry. With the rise of dis-

tributed computing, cloud computing, and crowdsourcing,
outsourcing difficult computational tasks presented itself
both as a challenge and as an opportunity. Mainly, two types
of computation outsourcing is considered in the literature. In
one type, the task is outsourced to a single powerful entity,
who has more resources to run the task (e.g., outsourcing a
computational job to an Amazon EC2 server). In the second
type, the job is outsourced to multiple small entities, such as
in the SETI@Home project, where people’s desktops and lap-
tops are performing the computation. There are two possible
gains from such an outsourcing: (1) the entities to which the
job is outsourced collectively will have greater resources, or
(2) simply put, the job will be outsourced, freeing up the
resources of the outsourcer. In this paper, we focus on this
second type of outsourcing where a task is sent to multiple
entities, calling the outsourcer the boss and the participating
entities the contractors. As long as the boss employs multiple
contractors, our solution does not need to differentiate
between outsourcing to multiple cloud providers or crowd-
sourcing to people’s computers.

In our scenario, the boss would like to outsource a compu-
tational task to untrusted contractors. Furthermore, the setting
is that the diligent contractors who act honestly will be
rewarded by the boss, whereas the lazy contractors who act

maliciously (and get caught) will be fined. Contractors in the
system are divided into three groups: Honest contractors who
always perform the job diligently, rational contractors who
would cheat if the utility of cheating is better than not doing
so, andmalicious contractorswhowould cheat asmuch as pos-
sible, even though its utility may be worse than acting dili-
gently. Note that in essence, honest and malicious contractors
are not rational. This setting has been analyzed in our previ-
ous work ([1]) and solutions were developed to incentivize
rational contractors to act honestly.

Our previouswork presents a two-player game using utili-
ties defined via the rewards and fines (see Section 3.1) with
two equilibria: both diligent and both lazy. Then, a bounty is
introduced to make sure the only equilibrium is both contrac-
tors being diligent. This bounty is given as an extra reward to
the diligent contractor, in case she helps catching the lazy one.
To understand this, when the boss outsources the computa-
tion to two contractors, he also asks them to return, along
with the result, an inner state hash value. Consider the compu-
tation as composed of some atomic operations. Inner state
hash value is the final hash value obtained by chain-hashing
inputs and outputs of all atomic operations in the computa-
tion. The assumption is that if one computes a different job
(the algorithm or input is different), the inner state hash value
will change. Thus, the boss can simply compare the values
returned by both contractors to decide whether or not there is
a controversy that needs to be addressed. The boss is trusted
to handle the distribution of rewards, fines, and bounties.

Our main goal here is to ensure the outsourced job is
computed correctly. We not only require that all the rational
contractors will have incentive to compute the job honestly,
but also enforce a bound on the damage any malicious frac-
tion of contractors can cause. Malicious contractors may try
to let the boss accept incorrect results without realizing it. They

� The author is with the Department of Computer Science and Engineering,
Koç University, Turkey. E-mail: akupcu@ku.edu.tr.

Manuscript received 18 Jan. 2015; revised 18 July 2015; accepted 29 Oct.
2015. Date of publication 11 Nov. 2015; date of current version 10 Nov. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2015.2499738

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017 633

1545-5971� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2099-2206
https://orcid.org/0000-0003-2099-2206
https://orcid.org/0000-0003-2099-2206
https://orcid.org/0000-0003-2099-2206
https://orcid.org/0000-0003-2099-2206
mailto:

may also try to elongate the job computation time by sending
incorrect results that are detected (since the job shall be
re-outsourced in that case). We provide proven bounds lim-
iting both of these attack types.

We present a multi-contractor outsourcing game and
show thatwith proper values of fines, rewards, and bounties,
we achieve a strict Nash equilibrium, and can incentivize all
rational contractors to act diligently. We further analyze
malicious contractors and present theoretical results about
howmuch extra work they can cause, and how good the cor-
rectness guarantee of our system is in the presence of mali-
cious contractors. Our experimental results confirm the
validity of the theoretical results in this paper. Finally, we
present a payment scheme for the fines and rewards, such
that the boss and the contractors mutually distrust each
other, but there is a trusted bank in the system. We argue
that even though the boss would want to pay fewer rewards
and the contractors would try not to pay the fines, using our
scheme such attacks are thwarted.

1.1 Related Work

A main requirement from outsourced computation is the
correctness of the returned results. This can be achieved
using zero-knowledge proofs [2], [3], [4]. This way, the con-
tractor may prove to the boss that the computation is done
properly, and the result that was returned is indeed the cor-
rect one. When the job or the input/output is not necessarily
hidden from the contractor, one does not need the extra
zero-knowledge property, and may use regular proofs. Out-
sourcing computation this way is called verifiable comput-
ing [5]. Similar to above, this technique is efficient for some
special cases, but notwhen used for general computation. In
Section 6.2 we show that using our system results in more
than four orders of magnitude better performance at the
contractor side compared to employing Pantry [6] verifiable
computation (one of the state of the art in verifiable compu-
tation). We emphasize that our setting is different (rewards
and fines are involved and multiple contractors participate),
and therefore these are not directly comparable. What we
claim is that we have a solution for correctness of out-
sourced computation that is efficient enough to be deployed
today, with almost no overhead. See [7] for a survey of veri-
fiable computation techniques.

Other outsourced computation techniques include ones
based on attribute-based encryption [8], secure function evalua-
tion [9], trusted hardware [9], and interactive proofs [10], [11].
There are also several implementations besides ours [6], [11],
[12], [13], [14], and architectural contributions [15]. Some
application-specific solutions exist as well, such as algebraic
computations [16], polynomial evaluation [17], [18], map-reduce
[19], sequence comparisons [20], linear programming [21], modu-
lar exponentiation [22], [23], and outsourcing to sensor devices
[24]. Distributed computation solutions such as Byzantine
agreement or Byzantine fault tolerance techniques may also be
employed [25], [26], [27], but again these techniques are inef-
ficient (requiring quadratic complexity for general computa-
tion). Furthermore, those techniques require at least one half
or one third of users to be honest, providing no security guar-
antee otherwise, whereas our scheme provides gradual
decrease in security with increasing number of malicious
users, with no upper bound on the fraction of malicious

contractors. Our system will work, just the correctness and
extrawork probabilities will depend on the actual fraction.

Verifying correctness of an outsourced computation by
making contractors perform extra work that is easy to
check has also been an interesting direction [28], [29], [30],
[31], [32]. In essence, the inner state hash technique we
employ from Belenkiy et al. [1] also fits into this category.
The contractors need to compute some hashes during the
computation, and the boss can easily verify those by com-
paring against the hashes provided by the other contractors.
We show in this paper that this is a very cheap technique in
terms of wasted contractor time, much faster than some
other proposals (e.g., Pantry [6]). Furthermore, our solution
requires extremely small amount of work at the boss (just a
simple equality comparison of results and hashes), while
some other solutions require re-computing the outsourced
task up to a point [33]. Nix and Kantarcioglu [34] let a user
outsource a static database to two servers, and then com-
pare their query responses. While being efficient for the
servers, either even the honest one may need to pay penal-
ties, or the client may need to perform a costly audit.

In works incentivizing crowdsourcing to human contrac-
tors [35], [36], there is an additional mediator (e.g., Amazon
Mechanical Turk, YahooAnswers) and themain concern is to
maximize the profits. See [37], [38] for a survey of suchworks.

In terms of payments of the rewards and fines, Carbunar
and Tripunitara [39] present a system using ringers [28],
achieving success rates up to 99 percent. This is an impor-
tant contribution, since most schemes assume trusted pay-
ment exchanges. In comparison, our payment solution is
cryptographically strong. Their scheme was later improved
by Chen et al. [40], but without considering the payment of
the fines as we do in our setting.

Lastly, it is worth mentioning how real world systems are
working. Prominent examples include SETI@Home1 and
Rosetta@Home,2 as well as other BOINC,3 World Commu-
nity Grid,4 andDistributed.net5 projects. These projects are in
the multi-contractor setting that we described. Unfortu-
nately, these systems currently offer no guarantees on the
correctness of the results [41].Moreover, even though the cur-
rent systems do employ rewards, they do not employ fines,
and so as explained in [1], they cannot achieve the security
guarantees we provide against irrational malicious contrac-
tors. Interestingly enough, vanDijk and Juels claim that cryp-
tography alone is not enough for many privacy-preserving
cloud computing applications [42]. We employ cryptography
as well as game theory and mechanism design to provide a
secure system for outsourced computation.

1.2 Contributions

The need: As we have seen, cryptographic solutions for gen-
eral computation are inefficient, purely game-theoretical
solutions fail to provide guarantees against irrational mali-
cious contractors, and Belenkiy et al. [1] solution does not
provide fair payments unless the boss is trusted by all.
Therefore, there is a need for efficiently outsourcing

1. http://setiathome.berkeley.edu
2. http://boinc.bakerlab.org/rosetta/
3. http://boinc.berkeley.edu
4. http://www.worldcommunitygrid.org
5. http://www.distributed.net

634 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

http://setiathome.berkeley.edu
http://boinc.bakerlab.org/rosetta/
http://boinc.berkeley.edu
http://www.worldcommunitygrid.org
http://www.distributed.net

computation to untrusted contractors such that the results
are correct with high probability and the overhead is small,
even with a relatively high fraction of malicious contractors
in the system. To that end, our contributions are as follows:

� We follow Belenkiy et al. [1] observation that fines
are an efficient way to incentivize rational contrac-
tors and are necessary for resilience against malicious
contractors. In addition, we create a multi-player
outsourced computation game that includes an addi-
tional bounty given to the diligent contractors who
help catch the lazy (cheating) contractors. We incen-
tivize all rational contractors to act diligently in this
new multi-player bounty framework.

� To the best of our knowledge, we categorize the
malicious contractors into four different types with
various abilities matching realistic scenarios, for the
first time. This presents the opportunity to analyze a
more realistic setup.

� For the first time, to the best of our knowledge, we
consider payments of rewards and fines using a
trusted bank and timestamping service. In the pay-
ment setting, we assume the boss is interested in
paying fewer rewards and the contractors are inter-
ested in not paying the fine, if possible. We devise a
cryptographic mechanism to enforce fair payments.

� We implement the boss, and different types of con-
tractors, including honest and malicious ones. We
present real experiment results from this implemen-
tation and compare against theoretical results. We
also implemented the inner state hash mechanism,
obtaining only 0:2 percent overhead.

� Via our implementation,we can, for the first time, pres-
ent results for a system with different fractions of vari-
ous types of malicious contractors. Our tests using a
mixed fraction of different types of malicious contrac-
tors yield 99:9 percent correct results from outsourced
computations, even though one-third of all the con-
tractors are maliciouswith only 3 percent extra work.
Measuring this limit is a hard task to tackle theoreti-
cally, but becomes easywith our implementation.

1.3 Overview

As discussed before, our goal is to very efficiently ensure
correctness of the computation results. We are considering
the setting where the boss wants to outsource the same job
to multiple randomly-chosen contractors. When all the con-
tractors assigned to the same job return their answers, the
boss will compare them. If all the answers match, the boss
will reward the contractors and accept that answer as the
result of the computation. We prove that this result will be
correct with high probabilities, even though a relatively
high fraction of the users are malicious.

If there is a mismatch between the answers returned for
the same job, then the boss must somehow find the correct
answer, and then reward the contractors who returned the
correct result and fine the ones who returned a different
answer. In addition, the contractors who returned the cor-
rect result will be provided an extra reward in the form of a
bounty, since they helped the boss catch the lazy or mali-
cious contractors.

There are multiple methods for the boss to understand
who returned the correct result, in cases of mismatches.
One possibility is for the boss to re-do the computation and
find the correct result himself. Another possibility is for him
to use a different verification algorithm. For example, if the
computation is an NP computation, then it has a verifica-
tion algorithm in P . The boss can run this verification algo-
rithm to determine which answer is the correct one. Yet
another alternative is for the boss to re-outsource the com-
putation to another random set of contractors, until an all-
matching response set is obtained. Then, he can go back and
compare the previous response sets and distribute the fines,
rewards, and bounties accordingly. This last method is the
one we suggest and analyze in this paper.6

In our presentation, we first describe the system assum-
ing all the contractors are rational; they either act diligently
and return the correct result, or act lazily and return a possi-
bly incorrect answer. Then, we include irrational contractors
who may behave honestly or maliciously. In both discus-
sions (only rational contractors case, or including irrational
contractors), we provide provable results in the strongest
form possible: We consider the worst-case scenarios for the
boss, and assume all lazy or malicious contractors are col-
luding together to harm the system (either by making the
boss accept incorrect results, or by forcing him to spend his
resources to deal with the mismatches). We carefully formu-
late and prove our theorems against these strongest form of
attackers. Note that purely game-theoretical mechanisms fail
to provide solutions against irrational malicious contractors.

Realize that contractors may cause two main types of
harm to such an outsourcing system. The worst one is that
they may (jointly) try to make the boss accept an incorrect
result without realizing that it is incorrect. In our system,
remember that if all the answers match, then the boss would
accept the result as correct. Thus, if all contractors that are
assigned to the same job return the same incorrect answer,
then the boss will mistakenly consider it as the right answer.
Unfortunately, this is a common scenario, where all lazy or
malicious contractors use the same fake algorithm that we
call a q-algorithm. (See Section 4.1 for more discussion and
real examples of fake algorithm uses in practice.) Fortu-
nately, we formulate our system according to this worst-
case setting and show that by setting our system’s parame-
ters properly, the boss can ensure a very high fraction of
correct results.

The other type of harm that the malicious contractors
may cause is to elongate the job computation time by
returning inconsistent results. Remember that the boss
would re-outsource the job if the answers are not all match-
ing, realizing that there is a problem. We again provide
bounds on the expected total effort spent, and show that the
overhead would be very small even in settings with a high
fraction of malicious contractors.

Our experimental results are given for scenarios with
high fraction of malicious contractors, confirming our theo-
retical results, as well as more realistic mixed-maliciousness
scenarios where not all malicious contractors are colluding

6. The boss may choose to take the majority answer in cases of mis-
match, but this requires additional theoretical analysis not shown in
this paper.

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 635

together, but rather some are independently malicious. We
realize that in this realistic (but still conservative) setting,
with proper fine to reward ratio settings, the boss obtains
more than 99:9 percent correct results with only 3 percent
extra work, even though we assume about one-third of all
contractors are malicious.

Finally, we also tackle the problem of fair payment of fines
and rewards. This is important in the settings where the con-
tractors and the boss mutually distrust each other. We solve
this problemusing newly-developed optimistic fair exchange
mechanisms that are specialized for this outsourced compu-
tation setting with multiple contractors. Note that in our
scheme, the boss needs to give a reward each time all the
answers returned by the contractors assigned to the same job
match. Essentially, thismeans a contractor can prove he is dil-
igent by making the trusted bank also compare these results,
if the boss fails to keep his promise. To help this process, we
use a simple timestamping serverwho certifies that a particu-
lar contractor indeed returned a particular result at a particu-
lar time. This timestamping server acts as a notary such that
the bank can later verify the claimed results. Similarly, a con-
tractor may try to cheat by not paying the fine even when he
returns an incorrect result. We show that our protocol
achieves fair payments against cheating attempts by both
the boss and the contractors.

2 SETUP AND MODEL

We call the entity who outsources the job the boss, and the
entities who perform the outsourced task the contractors. In
our model, we assume there is a single boss (who might as
well be acting on behalf of other entities outside the model),
and there are many candidates for contractors. The reward
given by the boss to the contractors, who the boss believes
to have performed the job correctly, is denoted r, and the
fine taken from the malicious contractors, who the boss
catches to have cheated, is denoted f . Furthermore, the
bounty given to the diligent contractors who help the boss
catch the cheating contractors is denoted b.

We consider three main types of contractors. When we
say that a contractor is honest, we mean she performs the job
exactly as requested by the boss. If a contractor is rational,
then she performs the job exactly as requested by the boss,
as long as she has an incentive to do so. In particular, the
utility of performing the job correctly must be greater than
the utility of doing anything else. Of course, by our assump-
tion that the entity is willing to become a contractor, this
implies that the reward r is greater than the cost of perform-
ing the job. Lastly, if a contractor is malicious, then she tries
to harm the system, mainly by trying to get the boss accept
incorrect results without detection of cheating, or trying to
elongate the job completion time by forcing the boss to re-
outsource, as long as these are within her capabilities. Since
there is a fine taken from malicious contractors when they
get caught, as we will see, it is impossible for a malicious con-
tractor to always cheat. Indeed, most of the time, they are
forced to act diligently.

To model the utilities of these different types of contrac-
tors, we first need to model the cost of executing a task.
Note that dishonest contractors may try to employ some
other, presumably cheaper, algorithm for the job, still trying

to get the reward. We define a generic class of such algo-
rithms as follows:

Definition 2.1 (q-Algorithm). An algorithm that a contractor
uses to compute an assigned job that outputs the correct answer
with probability q is a q-algorithm. When the contractor uses
the original prescribed algorithm, it means q ¼ 1. If the contrac-
tor cheats, it is necessarily the case that q < 1 (since using
another algorithm that always returns the correct answer is not
necessarily considered cheating, if such an algorithm exists).
The cost of employing a q-algorithm is denoted as costðqÞ.
We denote with costð1Þ the cost of performing the job

exactly as prescribed by the boss. With this definition, if a
contractor cheats, we require that q < 1 and costðqÞ <
costð1Þ, meaning that the cost of cheating will be less than
the cost of running the original task, since otherwise it
would be irrational to cheat anyway. For malicious contrac-
tors, it may make sense to still cheat even if costðqÞ ¼
costð1Þ, but the existence of the equality will not change any
of our results.

Following Belenkiy et al. [1], we assume that the out-
sourced task is composed of a finite number of atomic
operations. Define the inner state of an algorithm as the con-
catenation of all the input/outputs of the atomic operations
of the algorithm. The critical observation is that when one
employs a collision-resistant hash function, the hash of the
inner state of the original algorithm would, with high prob-
ability, be different from the hash of the inner state of any
other q-algorithm. In other words, the probability that any-
other q-algorithm outputs the correct inner state hash as
the original algorithm is negligible [1]. Note that, for small
output domains, guessing may be a good strategy (with
some good q value) for the contractor and the boss does not
want that. Hence, we need the inner state hash value to
ensure the result (actual output and inner state hash
together) cannot be guessed. This essentially means that by
concatenating the output with the inner state hash, we have
q � 0 for any algorithm other than the original algorithm.

The high level idea in such an outsourced computation set-
ting is to outsource the same job to a group of contractors
(group size m > 1), and then collect back their answers
together with the hash value of the inner state. Evenwhen the
output of an algorithm is long or there are many steps of the
algorithm, the hash values will be very short having constant
length (e.g., 160 bits). The beauty of this approach is two-fold.
First, as we show in the performance results, the overhead of
the additional inner state bookkeeping and hashing necessary
is very minimal, around 0:2 percent compared to the original
algorithm running time. Second, the boss’s job is extremely
easy and fast: just compare outputs and inner state hashes for
equality. If all the returned results are the same, the boss will
just accept one of the answers as the correct answer. If there is
a discrepancy, the job needs to be re-outsourced.

Remember that the diligent contractors are the ones who
performed the job correctly by running the original algo-
rithm, and the lazy contractors used some other q-algorithm
instead. Let ukðqÞ be the utility of a contractor when there
are k lazy contractors in the rest of the group, and when he
uses a q-algorithm. Further let UðkmÞ be the total combined
utility of k malicious contractors out of a group of m con-
tractors to whom the job is outsourced.

636 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

3 RATIONAL CONTRACTORS

In this section, we consider the case where the boss employs
a group of m randomly-chosen rational contractors for a
given job. The boss accepts an answer only if all the returned
results match, and re-outsources the job otherwise. Our goal
is to incentivize all rational contractors to act diligently.

3.1 Two Contractor Case

Belenkiy et al. [1] define a Prisoner’s Dilemma-like game,
where the contractors are socially better off if they act mali-
ciously simultaneously. Table 1 shows a two player game,
listing the expected utility of a player depending on whether
the other player is diligent or lazy. If this contractor is dili-
gent, regardless of what the other contractor does, she will
be rewarded r, but she pays the cost costð1Þ of performing
the job as directed. If both contractors are lazy, the boss will
accept an incorrect result, since he only verifies the results in
case of a mismatch, and we are considering the worst-case
scenario where both contractors use the same q-algorithm
and return the same incorrect result. They will both be
rewarded r, and pay only the cost costðqÞ of the q-algorithm
that they used. On the other hand, if this contractor is lazy
while the other is diligent (second column first row), she will
be caught if she returns an incorrect answer (which happens
with probability 1� q). When she gets caught, she will be
fined f . If she happens to return the correct answer (which
happens with probability q),then she will be rewarded r for
her work. In any case, she incurs the cost of the q-algorithm
that she used. Table 1 presents this logic.

There are two Nash equilibria: Both players lazy (cheat-
ing), or both players diligent (honest). The goal is to incentiv-
ize all contractors to act diligently. For this purpose, Belenkiy
et al. [1] introduce a bounty scheme which breaks the lazy
equilibrium, leaving both contractors being diligent the only
Nash equilibrium. The idea is that, if one contractor is diligent
and the other is lazy, the diligent one who helped the boss
catch the lazy contractor is rewarded an extra bounty b. Essen-
tially, the cell at the intersection of the Lazy row and the Dili-
gent column of the table will be updated with aþ b. Realize
that this bounty must ensure that r� costð1Þ þ b >
r� costðqÞ) b > costð1Þ � costðqÞ so that both players
being lazy is no longer an equilibrium. Since costðqÞ � 0 we
need b > costð1Þ. Unfortunately, they only consider two con-
tractors being employed, and they do not consider the burden
to the bosswho needs to pay this extra reward (bounty).

3.2 Multi Contractor Case

We extend this two-player game to m contractors, and pre-
cisely specify all the details. In particular, we lift the burden
on the boss in terms of paying bounty. Our solution requires
that the lazy contractors pay some extra fine, which will be
distributed back to the diligent contractors by the boss. The

total amount of the bounty given and the extra fine received
will be equal. Even though the main goal here is to lift the
burden on the boss, as we will see in Section 4, this tech-
nique also helps us deal with the malicious contractors. We
now define ourm-contractor game.

Remember that ukðqÞ denotes the utility function of a con-
tractor when there are k 2 f0; 1; . . . ;m� 1g lazy contractors
out of the other m� 1 contractors in the same group (who
are assigned the same job) and when this contractor uses a
q-algorithm. When all the other m� 1 contractors are lazy,
the diligent contractor will obtain the following utility:
um�1ð1Þ ¼ rþ bð1� qÞ � costð1Þ. This is because by return-
ing the correct answer, she will get rewarded, and if the lazy
contractors return a wrong answer (which happens with
probability 1� q, since we are assuming that the lazy con-
tractors are all using the same deterministic q-algorithm),
shewill get an extra bounty as well.7 In any case, by perform-
ing the job diligently, she pays the original algorithm’s cost.
At the other end of the spectrum, when all the other m� 1
contractors are diligent, the lazy contractor will obtain the
following utility: u0ðqÞ ¼ rq � ðf þ bðm� 1ÞÞð1� qÞ � costðqÞ.
The reason is that, when the q-algorithm used by the lazy
contractor returns the correct answer (which happens with
probability q), then she will obtain the reward r. But if she
returns an incorrect answer (with probability 1� q), the dili-
gent contractors will ensure that the boss catches her, and
thus she will need to pay both the fine and the bounty that
will be given to the m� 1 diligent contractors. In any case,
she incurs the cost of the q-algorithm. Table 2 shows the
m-contractor game.

Theorem 3.1. If the boss sets the bounty as b > r=ð1� qÞ, then
all diligent is a unique and strict Nash equilibrium in the game
defined in Table 2.

Proof. First, realize that if we generalize the two-contractor
game in Table 1 without any bounty, we still have two
Nash equilibria. The goal is to break the all-lazy equilib-
rium and make the all-diligent equilibrium strict, so that
no contractor will be better off being lazy. Hence, we
have to start by breaking the all-lazy equilibrium. To do
this, it must be the case that even if all other contractors
are lazy (k ¼ m� 1), a contractor has to be strictly better
off acting honestly:

um�1ð1Þ > um�1ðqÞ) rþ bð1� qÞ � costð1Þ > r� costðqÞ

) b >
costð1Þ � costðqÞ

1� q
:

Since costð1Þ � r (i.e., it is worth performing the task)
and costðqÞ � 0 (i.e., no negative cost), then we have
costð1Þ � costðqÞ � r. If the boss sets the bounty as

costð1Þ � costðqÞ
1� q

� r

1� q
< b;

then the all-lazy equilibrium will no longer be an
equilibrium.

TABLE 1
Two-contractor Game from [1]

Other
This
contractor

Diligent Lazy

Diligent r� cost1 uðqÞ ¼ rðqÞ � fð1� qÞ � costðqÞ
Lazy r� cost1 uðqÞ ¼ r� costðqÞ

7. This is the worst-case for the boss since the probability of accept-
ing incorrect answers is much higher. If the lazy contractors were all
using independent q-algorithms, then this probability would have been
negligibly smaller (due to the inner-state hash), and we would not need
to analyze such an attack. More discussion and examples of real cases
of using the same q-algorithm can be found in Section 4.1.

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 637

Second, we have to make sure that the all-diligent
equilibrium is strict. Therefore, it must be the case that
when all the other contractors are diligent (k ¼ 0), it must
be strictly better to be diligent as well:

u0ð1Þ > u0ðqÞ) r� costð1Þ
> rq � ðf þ bðm� 1ÞÞð1� qÞ � costðqÞ:

This is also achieved by setting the bounty as before
(sincem � 2):

rq � rþ costð1Þ � costðqÞ
1� q

� rq

1� q
¼ r

1� q
� r < b� r

� bþ f � bðm� 1Þ þ f (1)

since the reward, fine, and bounty are all non-negative.
Lastly, when 0 < k < m� 1 contractors are lazy, it

must be strictly better to be diligent as well:

ukð1Þ > ukðqÞ) rþ bð1� qÞ � costð1Þ
> rq � ðf þ bðm� k� 1Þ=ðkþ 1ÞÞð1� qÞ � costðqÞ

Using Equation (1) above, for all k 2 f1; 2; . . . ;m� 2g we
have

rq � rþ costð1Þ � costðqÞ
1� q

< b� r � bþ f

� bþ f þ bðm� k� 1Þ=ðkþ 1Þ:
tu

Corollary 3.1. Belenkiy et al. [1] show how to set q arbitrarily
close to 0 by employing hash functions, based on their unique
inner state assumption. Thus, it is sufficient for the boss to
set b � r for practical purposes.

We naturally obtain the same limit to bounty as
Belenkiy et al. [1], since their game is a special case of our
game with m ¼ 2. Yet, observe that the bounty is no longer
a cost to the boss, since it is taken as an extra fine from the
lazy contractors. Next, we see how this works in presence of
malicious contractors.

4 MALICIOUS CONTRACTORS

Up till this section, we presented a solution to the out-
sourced computation problem with multiple contractors,
assuming all the contractors are rational. However, as we
first described our model, in reality there are honest and
malicious entities in addition to the rational ones. Honest
contractors are always welcome to an outsourced computa-
tion system. Thus, our goal is to limit possible damage that
malicious contractors can incur.

There are two types of damage the malicious contractors
can inflict on our system. In the first type of attack, the mali-
cious contractors’ goal is to make the boss accept an incor-
rect answer. In the second type, their goal is to make the
boss perform extra work. These two attacks were analyzed
by Belenkiy et al. [1] for a no-bounty scenario, and without
taking into account all four different types of malicious con-
tractors below. We now perform a detailed analysis for our
m-contractor bounty-based game defined above, when
malicious contractors are present.

Remember that in our setting, the boss accepts an answer,
only if all them returned answersmatch, including the hashes
of the inner states. If all the answers match, there is no bounty
to be given (since no contractor catches a lazy contractor).
Therefore, this corresponds exactly to the case of Belenkiy
et al. [1], and the related result is included in the Appendix
for the sake of completeness of the results in this paper.

In terms of causing the boss perform extra work, the
malicious contractors will aim to create a discrepancy
among the returned results. In general, it may be enough to
insert just one different answer to force the boss re-
outsource the same job. Once we define the capabilities of
different types of malicious contractors, we can analyze
both results formally, and thereafter present the results
from the real runs of the system.

4.1 Types of Malicious Contractors

We categorize malicious contractors into four types based
on their capabilities. We also relate each type to real attacks.

1) Fully-independent malicious contractors: These contrac-
tors may act irrationally, but they do not collude at
all. Each such malicious contractor acts completely
independently. Remember that the boss selects a ran-
dom group of m � 2 contractors, and outsources the
same job to this group. The probability that fully-
independent malicious contractors will return the
same answer without computing the original algo-
rithm is negligible, due to the unique inner state
assumption of Belenkiy et al. [1].

2) Semi-independent malicious contractors: These contrac-
tors may provide the same wrong result. This may be
achieved by the contractors downloading a fake cli-
ent on purpose or accidentally (believing that it is
the correct client software, e.g., through phishing or
DNS-spoofing). Such attacks are already known to
exist in outsourcing systems8,9,10. This fake client
may give the same incorrect answer to all the

TABLE 2
Utility of a Contractor in anm-Contractor Game, based on the Actions of the other Contractors

This
Others Diligent Lazy

All Diligent u0ð1Þ ¼ r� costð1Þ u0ðqÞ ¼ rq � ðf þ bðm� 1ÞÞð1� qÞ � costðqÞ
k Lazy ukð1Þ ¼ rþ bð1� qÞ � costð1Þ ukðqÞ ¼ rq � ðf þ bðm�k�1Þ

kþ1 Þð1� qÞ � costðqÞ
All Lazy um�1ð1Þ ¼ rþ bð1� qÞ � costð1Þ um�1ðqÞ ¼ r� costðqÞ

8. http://tinyurl.com/truxoft
9. http://home.hccnet.nl/adas/pfp-m20010130a.html
10. http://tinyurl.com/rosettaextracredit

638 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

http://tinyurl.com/truxoft
http://home.hccnet.nl/adas/pfp-m20010130a.html
http://tinyurl.com/rosettaextracredit

contractors who downloaded it. Hence, we still con-
sider these contractors kind of independent, but the
results they provide are indeed dependent.

If there is at least one honest or rational contrac-
tor aside from these semi-independent malicious
contractors in the group that is assigned the same
job, then the cheating ones will be caught (since
rational contractors will act diligently according to
Theorem 3.1). Even though this is a very realistic
type of attack, we will not delve deeper since its
effect on the system is very limited (indeed, their
effect is exponentially small in m). (See Appendix.)

3) Semi-colluding malicious contractors: There are multi-
ple ways for malicious contractors to collude. For
example, there may be a bulletin board type of web-
site where the one who found the result first can
post it and the other contractors get it for free (their
cost would be almost 0). However, if the results
returned are correct, there is no problem to the boss.
The only advantage to the these colluding set of
malicious contractors would be that their costs are
less and some of them will get paid without doing
the job. Yet, the boss is already willing to pay that money
for obtaining the correct answer to the task.

As an alternative, there may be an advanced fake
client that learns and communicates how many con-
tractors are being employed for that assignment
(i.e.,m) and how many of these contractors are using
this client (i.e., k). This way, it can act more intelli-
gently, and return the same wrong answer only if all
the contractors being employed are using this client
(i.e., k ¼ m). Even though the boss selects the con-
tractors randomly, they can collude without know-
ing each other with this fake client set-up.
Furthermore, the semi-colluding malicious contrac-
tors can collude in a way that they give inconsistent
answers, so that the boss will need to re-outsource
the job. To achieve this attack, the fake client can
return the correct answer to some of the contractors
and a wrong answer to some others. However, these
semi-colluders are independent in terms of their budget.

4) Fully-colluding malicious contractors: Here, we assume
that the malicious contractors can jointly decide on
their outputs, as well as share their budgets. One possi-
ble realization will be through the most advanced ver-
sion of the fake client, which controls the contractors’
output and budget. Another possible realization
would be through the Sybil attack [43], where one
party impersonates many to make sure the random
selection of the contractors would result in some of his
identities being selectedwith some good probability.

Realize that this type of malicious contractors are
the hardest to defend against. In the next section, we
prove that our system is resilient to even this type of
contractors.

4.2 Attacks of Fully-Colluding Malicious
Contractors

Since fully-colluding malicious contractors are able to incur
the most damage to the system, in this section we present
provable bounds on this worst-case damage that can be

caused in our system. Suppose the boss assigns the job to m
contractors, where k of them happen to be fully-colluding
malicious contractors, where a g fraction of all contractors in
the system are fully-colluding. A crucial observation is that,
to be able to be employed by the boss, each contractor must
keep a balance that is enough to pay the fine whenever nec-
essary. Therefore, even malicious contractors must act dili-
gently from time to time to ensure that they have enough
balance to be employed. If a contractor does not have
enough money to pay the fine, the boss will not hire him.
Since colluders are trying to make the boss perform extra
work by forcing him to re-outsource the job by submitting
inconsistent answers, intuitively only one of them will sub-
mit a wrong answer, while the other colluders will still sub-
mit the correct answer. This way, they are trying to
compensate for the fine that one colluder needs to pay.
Remember, that they share the budget. The next theorem
proves that this is indeed their best attack strategy.

Theorem 4.1. For a group of k colluders to make the boss perform
the most amount of extra work, their best strategy (the strategy
with the highest combined utility) is that one colluder will submit
a wrong answer (and get fined) and the rest (k� 1 of them) will
submit the right answer, and collect the reward and the bounty.

Proof. Suppose the number of malicious contractors who act
diligently is n with 0 � n � k. Since their goal is to make
the boss to do extra work, there has to be at least one
non-matching answer ðn � k� 1Þ. Note that if all of the
contractors are malicious and colluding (k ¼ m) and all
of them are cheating (n ¼ 0), the boss cannot detect
cheating since all the answers are the same wrong
answers. In terms of making the boss accept an incorrect
answer, please see Theorem 7.1 in the Appendix. If the
goal of the colluders is to make the boss to perform extra
work, they should set 1 � n. When k 6¼ m, they can set
n ¼ 0 as well since this time there are other rational con-
tractors who will act honestly. But the lower bound on n
does not affect this proof.

The n diligent colluders will receive rþ b each as the
reward plus the bounty, and the remaining k� n con-
tractors will have to pay the fine f each, and the extra
fine ðm� kþ nÞb in total (i.e., there will bem� kþ n cor-
rect results since m� k non-malicious contractors will
act diligently, and n malicious contractors will do the
same as well). The total utility (the payment received
minus the total fine paid, also considering the costs
incurred) of the group of malicious contractors will be:

Uðk;mÞ ¼ n½rþ bð1� qÞ � costð1Þ� þ ðk� nÞ

� ½rq � ðf þ bðm� kþ nÞ
k� n

Þð1� qÞ � costðqÞ�:

Since the colluders want to trick the boss to do extra
work, they must return at least one wrong answer with
probability 1 (therefore q ¼ 0). Moreover, we assume the
worst case that costð0Þ ¼ 0 because the contractor can
simply return a random answer. Therefore,

Uðk;mÞ ¼ nðrþ b� costð1ÞÞ � fðk� nÞ � bðm� kþ nÞÞ
¼ nðrþ f � costð1ÞÞ � kf � bðm� kÞ:

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 639

In this utility function, the only part that is related to the
number n is ðrþ f � costð1ÞÞ. Since r � costð1Þ and
f � 0, we have ðrþ f � costð1ÞÞ � 0. Thus, whatever the
values of r; f; b;m and k are; if n is higher, the colluders
will be better off. Therefore, their best strategy is to set
n ¼ k� 1. Hence one colluder will submit a wrong
answer and the rest will submit the right answer. tu
Now that we know the best strategy that will be

employed by the fully-colluding malicious contractors, we
bound the possible damage they can incur on the system.

Theorem 4.2. If the fraction of fully-colluding malicious contrac-
tors in the system is g, and the boss outsources the job to a
group ofm contractors, then the fraction of jobs fully-colluding
malicious contractors can cause extra work for boss is at most
rgm=ðrþ fÞ, where r is the reward and f is the fine.

Before we prove Theorem 4.2, we need two intermediate
results. Let P ðk;mÞ ¼ m

k

� �
gkð1� gÞm�k be the probability

that there are exactly k colluders in a group of size m. Fur-
thermore, let A ¼ Pm

k¼1 P ðk;mÞ be the probability that there
is at least one colluder in the group. Finally, let
B ¼ Pm

k¼1 P ðk;mÞk. According to Lemma 7.1 in the Appen-

dix, we have A ¼ 1� ð1� gÞm and B ¼ gm [1]. We also
have this lemma:

Lemma 4.1. Am�B � 0.

Proof.

0 � g � 1) 0 � 1� g � 1

) ð1� gÞm�1 � 1) ð1� gÞm � 1� g

) g � 1� ð1� gÞm) gm � ð1� ð1� gÞmÞm
) B � Am) Am�B � 0:

tu
Proof of Theorem 4.2 Whatever the contractors do, they must
keep their balance non-negative. Indeed, they need to keep
a balance at least as much as the fine to be employed at all,
but for the sake of a worst-case proof, since the fine is non-
negative, they must keep a non-negative budget. Since
fully-colluding malicious contractors share their budget, it
is necessary and sufficient for them to keep their total utility
non-negative. Let y be the probability that colluders apply
the best strategy presented in Theorem 4.1. Then, x ¼ 1� y
is the probability that all colluders return the correct answer
(when they are forced to do so to keep their shared budget
non-negative). The boss wants to limit y and wants x to be
high.

Let k be the number of colluders out of m contractors
employed for the same task. Realize that all m� k con-
tractors will act diligently since they are either honest or
rational who are incentivized to act diligently. When the
colluders all act honestly (with probability x), they all get
the reward r. (Since no one has cheated, no bounty is
given.) When they apply their best strategy (with proba-
bility y), each of the k� 1 diligent ones will get the
bounty b and the reward r, and one of them will pay the
fine f as well as the extra fine bðm� 1Þ, which is equal to
the total bounty given, including the bounty given to the
other (honest/rational) contractors. Thus, the total utility
of the colluders will be Uðk;mÞ ¼ xkrþ yððk� 1Þðbþ rÞ

�ðf þ bðm� 1ÞÞ. We now take the expectation over dif-
ferent values of 1 � k � m.11

Xm

k¼1

P ðk;mÞUðk;mÞ ¼
Xm

k¼1

P ðk;mÞ½xkrþ yððk� 1Þðbþ rÞ

� ðf þ bðm� 1ÞÞ�

¼
Xm

k¼1

P ðk;mÞ½xkrþ ykr� yr� yf

� ybðm� kÞÞ�
¼ xrBþ yrB� yrA� yfA� ybðmA�BÞ
¼ rB� yrA� yfA� ybðmA�BÞ:

At the last two steps, we substituted the values for A;B
and used the fact that xþ y ¼ 1. Colluders must keep
this utility non-negative while maximizing y. Then, we
can write

y � rB

rAþ fAþ bðmA�BÞ �
rB

rAþ fA
¼ rgm

Aðrþ fÞ
using basic algebraic operations and Lemma 4.1.

If the colluding group cheats at y fraction of the jobs
they were assigned, they can trick the boss to do extra
work. The probability that there is at least one colluder
among the employed group of contractors is A. There-
fore, the fraction of the jobs where the colluders can force
the boss to do extra work is Ay which is at most
rgm=ðrþ fÞ. tu
It is interesting to note that the result of this theorem also

includes the result that Belenkiy et al. proved for the case
where there is no bounty in the system. If we plug their way
of setting the fine as f ¼ rd

p , where they use p as the probabil-
ity of catching a cheating contractor and d is some deterrent
factor, then rgm=ðrþ fÞ becomes pgm=ðpþ dÞ ([1, Theorem
9]). Therefore, we essentially proved that the bounty system,
while incentivizing all rational contractors to act diligently,
does not introduce any weaknesses against malicious con-
tractors to the system.

Finally, we note that the payment of the bounty by the
lazy contractors have a two-fold effect. First, it eases the
load of the boss since he does not need to pay extra for the
job. Second, it keeps the damage by the malicious contrac-
tors low.

4.3 Expected Completion Time of a Job

Remember that the boss accepts the returned result when all
m contractors return a matching output. When there is a con-
troversy in the answers, the boss must differentiate which
answers are correct andwhich are not, so that he can correctly
distribute the reward and the fine, aswell as the bounty.

The first method is that the boss verifies the answers him-
self. This can be done in two ways: by running the original
algorithm for the job himself, or using some other verifica-
tion algorithm. In some applications, the verification can be
very simple. For example, in the integer factorization prob-
lem, the computation of the factors is hard, but their

11. Remember that all our bounds are for the worst cases. Even
when k ¼ m it is presumable that the attackers try to force the boss to
perform extra work instead of making him accept an incorrect answer,
by using their best strategy.

640 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

verification is relatively simple. In general, for all problems
that are believed to be in NP � P , there is no currently-
known solution in P , and verification (in P) is simpler than
computing the answer. Even if the job itself is in P , verifica-
tion may be easier (e.g., consider a matrix multiplication job

with complexity Oðn3Þ, for which there exists a (probabilis-

tic) verification algorithm that is Oðn2Þ [16]). However in
some situations, the verification can be as hard as the job
itself, or the boss may even need to re-compute the job him-
self to verify the outputs. Even if the fraction of verifications
is low, this may greatly reduce the benefits of outsourcing.
Besides, in some situations, the boss may not have enough
power to verify the answers.

The second method is that the boss again employs con-
tractors to verify the answers provided by the other contrac-
tors. This can be done by re-outsourcing the job to a new
group of (m random) contractors, until all the answers in
the same group are the same. This method is the method we
suggest and analyze below. The drawback of this method is
that it consumes even more resources of the system as a
whole; but the key point here is that those resources do not
belong to the boss. Theorem 4.3 investigates the amount of
the extra resource consumption.

Theorem 4.3. If the fraction of times that there is a dispute
among the returned results is E (i.e., from Theorem 4.2), then
the expected number of times a job is outsourced is 1=ð1� EÞ
(including the first outsourcing), assuming the boss keeps out-
sourcing until there is no dispute.

Proof. Obviously, we outsource a job at least once. If there is
a mismatch in the answers (which happens with proba-
bility E) then we re-outsource it. If there is a problem

again (now with probability E2), we outsource the same
job again etc. The expected number of times a job is out-
sourced is (with 0 � E < 1):

1þ E þE2 þ 	 	 	 ¼ 1

1� E
:

tu
Corollary 4.1. The expected total number of the contractors

employed for one job ism=ð1� EÞ.
Corollary 4.2. If we assume that a job can normally be completed

in time t, then the expected total time required to complete that
job will be on the order of t=ð1�EÞ.12

Corollary 4.3. Note that if the boss were to compute the job her-
self, she would have also spent at least t time to compute the
job. Thus, the overhead of outsourcing in our system is around

E=ð1� EÞ fraction of the local computation time.12

Our game-theoretic analysis ends here. We provide eval-
uation results in Section 6. But before that, we provide a
mechanism that ensures the payments of the fines and
rewards are done fairly, even though both the boss and the
contractors may try to cheat. The reader may choose to skip
Section 5 for the first reading.

5 ENSURING FAIR PAYMENTS

In the Belenkiy et al. [1] scenario, the contractors are
untrusted, but the boss also acts as the bank, holding the
balances of the contractors, and has the ability to fine and
reward them at will. Unfortunately, this is not a practical
setting, since it assumes the boss is ultimately trusted by all
contractors. Instead, in practice, we have banks who are
trusted to handle monetary transactions, and the boss may
cheat since he may not want to pay the reward that the dili-
gent contractors deserved. The contractors, as before, may
try to cheat so as not to pay the fine. In this section, we
show how to modify the payment system such that even
when the boss and the contractors are all untrusted, the pay-
ments are fair as long as we have a trusted bank.

The techniques we employ in this section include elec-
tronic checks [44] or electronic cash [45], and fair exchange
[46], [47]. Depending on the constructions, there may be spe-
cific choices of the underlying primitives to be employed for
the sake of efficiency. For example, k€upç€u and Lysyanskaya
[47] recommend using Endorsed E-cash [48] with Camenisch-
Shoup verifiable encryption [49] to obtain an efficient and
anonymous protocol. On the other hand, they recommend
using simple electronic checks if anonymity is not desired.
Note that fair exchange requires a trusted third party [50],
[51], called the arbiter [47], [52]. Since we already have a
trusted bank in the system, and since fairness here is for the
sake of the payment of the rewards and fines, we will employ
the bank as the arbiter aswell.

Our goal includes the fair processing of the following
payments:

� Payment of the reward by the boss to the diligent
contractors.

� Payment of the fine by the cheating contractors to the
boss.

Note that even though we have presented a bounty set-
ting, for the sake of simple presentation, we focus on the
payments of the rewards and fines. Payment of the bounty
can be handled via similar techniques, since it requires both
the payments by the cheating contractors to the boss (like
fines), and the payments by the boss to the diligent contrac-
tors (like rewards).

One key issue any payment system for outsourced com-
putation needs to address is the definition of “correct
computation”, or equivalently, the “diligent contractor”. The
naive way would be to define the correct computation using
the desired output. But the whole point of outsourcing compu-
tation is that the boss does not know the output ahead of the
time. Yet, in our setting, there exists a very natural and useful
definition.We define a “diligent contractor” to be the onewho
returns the answer that agrees with all the m answers,
wherem is the cardinality of the set of contractors employed
for the same job. In case of mismatch between them answers,
the identification of the diligent and cheating contractors

12. It is assumed that the time passed during the network communi-
cation is very small compared to the time required for computing the
job, and the contractors always start the job immediately and send the
results back once the algorithm is finished. Even though these assump-
tions may make it sound like in reality the actual time would be larger,
it is possible that the contractors have faster machines and thus the total
time in reality may even be smaller than the time that the boss would
have needed to compute locally. Furthermore, as our performance
results show, the slowdown due to the inner state computation is very
small as well.

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 641

would be delayed, until further outsourcings of the same job
are finished. Once an outsourcing of the same job returns m
matching answers (call that answer correct), then the con-
tractors who returned the same answer correct in any previ-
ous outsourcing of the same job will be considered diligent.
All other contractors are, by definition, cheating.

Observe that this definition of diligent allows colluding
malicious contractors to be seen as diligent, if the whole
group for the same outsourcing of a job consists of colluding
malicious contractors. Yet, under the assumption that the
boss accepts matching answers, they deserve getting paid
the reward. Therefore, this does not constitute a problem of
our system.

Any boss who wants to oursource a task to m contractors
must have enough balance to pay m rewards (i.e., balance
� mr). Similarly, any contractor who wants to be employed
must have enough balance to pay the fine (i.e., balance � f).
Yet, just obtaining a signed statement from the bank attest-
ing to this is not enough, since the contractor may try to
present such a signature to multiple bosses or for multiple
jobs, even when she has balance enough to pay only one
fine. The solution we propose involves escrowing the neces-
sary amount to the trusted bank.

An escrow is encryption of some value under the public
key of the bank. Since our context is payments, the escrow
would contain some form of a payment (e-check [44] or e-
cash [45]). A verifiable escrow of a payment enables the
receiver of the verifiable escrow to verify (without decrypt-
ing) that it indeed contains the necessary payment. For
example, as suggested by k€upç€u and Lysyanskaya [47], if a
Camenisch-Shoup verifiable escrow [49] contains an
Endorsed E-cash [48] e-coin, then the recipient can verify
that the e-coin is valid (including the amount it is worth),
without actually obtaining the payment. A verifiable escrow
also contains a public non-malleable contract, which
describes the conditions that the bank would decrypt it and
give the payment to the requester.

It is important to note that the rewards and fines are one-
use payments,13 and thus if a contractor already had the
reward, or if the boss already obtained some fine, they gain
no additional payment by trying to use it again.

If the boss did not send the reward, thenwe need amecha-
nism for the diligent contractors to obtain the reward (via the
bank). Similarly, observe that a malicious contractor may
choose not to send a response (or not to sign it, see below).
As far as the boss is concerned, this is equivalent to sending a
wrong result. For these purposes, we introduce job timeouts,
fine timeouts, and reward timeouts to the system.14,15Moreover,
to ensure that the contractors indeed performed the compu-
tation within the required time, we employ a trusted time-
stamping/notary server [54]. Suppose the boss is registered

to the timestamping server so that the server knows him.
When a contractor asks for a timestamp on some value, the
server returns the stamp to the contractor, and forwards the
value togetherwith the stamp to the boss.

Notation. VEðitem; contractÞ specifies a verifiable escrow
encrypting some item and labeled with a contract. The
reward is denoted r, and the fine is denoted f , as usual. jid
denotes the job identifier, out is the output of the computa-
tion (including the inner state hash value). signskðmsgÞ
denotes a signature on the message msg using the secret
signing key sk. The signature can be verified using the cor-
responding public verification key pk. Each contractor signs
the output out and the job identifier jid. The timestamp t is
created on these values and their signature s using the time
of the trusted timestamping server. Similarly, the timestamp
tf is the stamp over the verifiable escrow of the fine that the
contractor sends.

5.1 Fair Payment Protocol

The protocol summarized in Fig. 1 works as follows (please
employ the circled numbers to match the text to the figure).

1 At the beginning of the protocol, each contractor i gener-
ates her signature public-secret key pair pki; ski, and sends
the public verification key pki to the boss. This public key
will be used to tie the contractors’ answers to their escrowed
fines and rewards. This way, the boss will be able to prove
which contractors did indeed cheat, or the contractor will be
able to prove that she did not cheat. If a public key infrastruc-
ture exists, then it can be employed instead (then we do not
need this first step, and we do not need to put the signature
public keys into the escrow contracts), but such an infrastruc-
ture is not necessary. Note that all public signature verifica-
tion keys need to be distinct. Otherwise, the boss should not
outsource to those contractors.16 Realize that this may also
be thought as a one-time registrationwith the boss.

2 Next, for the payment of the rewards, the boss creates
m separate verifiable escrows vri each worth r, and sends
one to each employed contractor. Verifiable escrows contain
a unique job identifier jid in their contract, computed as the
hash of the job (which is the prescribed program together
with its input). The contract also indicates the fine timeout,
the job timeout, and the reward timeout (all abbreviated in
the figure notation as time). Furthermore, the contract of
each vri indicates the signature public key pki of the contrac-
tor i. The boss also sends the job, but the contractors do not
start computing it yet. Each contractor i will verify the
escrow vri she receives (including the contract to ensure
that the public key is hers, the jid is indeed the hash of the
job, and the timeout values are as expected), and stops if
something is wrong.

3 Now that the contractors each have a verifiable escrow
from the boss, they each create a verifiable escrow vfi worth
f . These escrows also contain the same contract. Each con-
tractor sends her vfi to the timestamping server who does
two things: 1) creates a timestamp tfi on it and sends this
timestamp back to the contractor, and 2) forwards the verifi-
able escrow vfi together with the timestamp tfi to the boss.

13. This is already simply done using serial numbers for both elec-
tronic checks and electronic cash.

14. The standard way of introducing a timeout in a fair exchange is
adding it to the contract of verifiable escrows [53].

15. Obviously, the fine timeout—the deadline to send the verifiable
escrow of the fine, signaling acceptance of the job—needs to be earlier
than the job timeout, and the job timeout—the deadline to complete the
job and return the response—needs to be earlier than the reward time-
out—the deadline for the boss to send the reward or the wait signal to
the contractor—.

16. The boss may also ask for a signature on a random dummy mes-
sage to ensure that the contractor knows the corresponding secret sign-
ing key.

642 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

4 Just as the contractors verified the boss’s escrows, the
boss also verifies each such escrow it receives. If something
is wrong (some verifiable escrows did not verify or the boss
did not receive some with valid timestamps before the fine
timeout), the boss replaces the problematic contractor. To
replace a contractor, the boss sends the job and verifiable
escrow vrj of the reward to some new contractor j (with
updated fine timeout). If that new contractor sends back
the verifiable escrow vfj of the fine before her fine timeout,
then the group is complete, and the boss starts waiting for
the job results.

5 Once the contractor i sends her verifiable escrow vfi in
time and obtains back the timestamp tfi, she starts computing
the job (i.e., she does not need to wait until the fine timeout).
At the end, she obtains the output outi (including the inner
state hash value), and then she creates a signature si on it
(along with the job identifier) using the secret key ski match-
ing the public key pki in the contract of her verifiable escrow
vfi. She sends the output and the signature outi; si to the time-
stamping server. The timestamping server generates a time-
stamp ti and sends it to the contractor, while forwarding the
outi; si; ti to the boss. This will be used to prove that the con-
tractor indeed computed the job before the job deadline.

6 Now the boss verifies the signatures (and timestamps)
and compares all the outputs (including the inner state
hashes). If they all match, he sends the rewards to the con-
tractors, and the protocol ends. If there is a mismatch (or
some contractors did not return the result until the job time-
out, or sent the result with an incorrect inner state hash, or
sent the result with an invalid signature), the boss tells the
current set of m contractors to wait, and re-outsources the
job to another group of m contractors (until he receives all
matching answers). The boss also contacts the bank to
inform about the mismatch for that particular job id so that
the bank delays the reward timeout for that particular job.
Each re-outsourcing requires the same procedures, but the
re-outsourced job identifier is computed as the hash of the
current job identifier.

7 Finally, the boss receives m matching answers from
the same (re-)outsourcing. Let us call the final matching set
of m answers correct. The boss sends the reward to all con-
tractors who also returned the same answer correct in any
one of the outsourcings of the same job. He then contacts

the bank to obtain the fines, if re-outsourcing was necessary.
The protocol between the bank and the boss is called
Boss Resolve.

8 After sending the result and obtaining the timestamp,
each contractor waits to hear from the boss until the reward
timeout. If the boss asks the contractor to wait, she waits for
one more reward timeout. If the boss did not ask the con-
tractor to wait and did not send the reward before the
reward timeout, the contractor contacts the bank. This oper-
ation is called Contractor Resolve.

Boss resolve. Remember that this protocol is executed only
if the boss needed to re-outsource the job and needs to
obtain some fines (assuming the lazy or malicious contrac-
tors did not already willingly pay the fines). For the boss to
obtain the fine from the bank, he needs to prove that the
contractor sent an incorrect result or did not send a signed
result in time. We need to employ the help of the time-
stamping server here.

To obtain the fine of a cheating contractor i, the boss
presents the verifiable escrow vfi of that contractor with job
identifier jid, and the m verifiable escrows, results, and sig-
natures of those who sent the answer correct. For simplicity
of the presentation, assume that the second time the job is
outsourced, all results matched. Therefore, all m correct

signed results must belong to the job identifier
jid0 ¼ hashðjidÞ, and the bank verifies this. It is very easy to
generalize this idea. For example, assume the job is out-
sourced three times, where in the first two there were mis-
matches. Note that if the first outsourcing had job identifier
jid, then the second one would have jid0 ¼ hashðjidÞ, and
the third one would have jid00 ¼ hashðjid0Þ. Also observe
that this means in the first two outsourcings, there was at
least one cheating contractor each time. Suppose contractor i
cheated in the first outsourcing, and contractor j cheated in
the second. Thus, the boss must provide the bank vfi with
job identifier jid, vfj with job identifier jid0, andm matching

outputs all with job identifier jid00. Furthermore, the bank
knows how many times a particular job is re-outsourced,
since each before re-outsourcing the boss informs the bank.
The bank also verifies that all m results contain the same
correct answer, and have valid signatures under the public
keys in the corresponding verifiable escrows of fines.

It is safe to assume that a cheating contractor would not
send a signed incorrect answer, and that the boss who
wants to obtain the fine would not present values in favor
of the contractor. Therefore, the bank employs the help of
the timestamping server, and proceeds as follows:

1) The bank asks the timestamping server for all the
outj; sj values for the job identifier jid. There are two
options:
a) If none of the results returned by the timestamp-

ing server has a verifying signature under the
public key pki in the verifiable escrow vfi, mean-
ing that the contractor i did not perform the job,
the bank decrypts vfi to obtain f and pays the
boss the fine f .

b) If one of the returned results has a verifying sig-
nature si under the public key pki in the verifi-
able escrow vfi, then the bank uses that outi

Fig. 1. Our fair payment protocol overview.

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 643

value. If the associated timestamp is valid but
late or the output outi is incorrect (i.e., different
from the m correct outputs), the bank decrypts
vfi to obtain f and pays the boss the fine f .

Contractor resolve. This protocol is executed if the contrac-
tor did not get the reward until the reward timeout for a job
she completed. Note that the reward timeout resets after a
wait signal from the boss, and hence by the reward timeout
here we mean the latest version of it.

If contractor i contacts the bank to obtain the reward, she
needs to present outi; si; ti (the output together with the
inner state hash, the signature, and the timestamp) and the
verifiable escrow vri of her reward. She also presents her
verifiable escrow vfi of the fine, together with the time-
stamp tfi on it. The bank proceeds as follows:

1) If it is before the reward timeout, the bank aborts.
Note that at each re-outsourcing, the boss contacts
the bank so that the reward timeout is delayed for
one more outsourcing. By the reward timeout here,
we mean the last version of it (for the last re-
outsourcing of the same job).

2) If the verifiable escrow vfi fails to verify, or the con-
tracts of vfi and vri are different, or tfi timestamp is
later than the fine timeout in the verifiable escrow
contracts, or timestamp ti is later than the job time-
out in the verifiable escrow contracts, or the signa-
ture si does not verify using the public key in the
verifiable escrow contracts, then the bank aborts.

3) If the process is still continuing, it is already after the
reward timeout and the bank knows that all the val-
ues (except outi) provided by the contractor are
valid. There are two options:
a) If the boss never contacted the bank about the job

identifier in vri until the reward timeout, this
means that there were no problems, and thus the
bank decrypts vri to obtain r, and rewards the
contractor.

b) If the boss performed Boss Resolve with the
bank, then the bank checks if the answer given
by contractor i is the correct answer for that job
identifier (or a hash-related job identifier). If so,
the bank again rewards the contractor.

5.2 Fairness Analysis

First of all, observe that if all contractors performed the
job diligently and the boss acted honestly as well, then
the bank is not involved at all. This is akin to the optimis-
tic behavior in fair exchange protocols [46] or official arbi-
tration protocols [55]. The timestamping server is always
involved, but it is a very simple server that signs the
given value together with the current time without any
check, sends the timestamp to the contractor, forwards
the value together with the timestamp to the boss, and
stores the value together with the timestamp in case the
bank asks. We are assuming the boss registered with the
timestamping server initially, so that the timestamping
server can easily forward the associated values to him.
The timestamping server storage also need not be indefi-
nite, as we discuss in the next section. Moreover, we took
great care in our protocol to make sure the timestamping

server only needs to know the boss, but not the individ-
ual contractors. This is one of the key points of our solu-
tion, and makes the design much harder (as otherwise
anything can go through the timestamping server).

When the job is outsourced, note that its identifier jid is
computed as the hash of the job. This helps create unique
identifiers and ties the job to the verifiable escrows. The job
identifiers for re-outsourcings are related in a hash-chain
manner, which can be easily verified by the bank. Further-
more, the outputs and their inner state hashes are also tied
to the job id via the contractors’ signatures. Moreover, the
signature ties a particular output to the related verifiable
escrow. Finally, the timestamp bundles the output (includ-
ing the inner state hash) and the signature all together. It
also allows us to verify against the job timeout using the
time value in the verifiable escrows’ contracts. The verifi-
able escrow timestamp signals acceptance of the job by a
contractor, and is necessary both for the contractor to obtain
the reward, and for the boss to obtain the fine.

We observe that for a contractor to be able to obtain the
reward, she must have sent her verifiable escrow of the fine
before the fine timeout. That escrow signals that the contrac-
tor accepts the job. She must also return the correct result
before the job timeout to be able to obtain the reward.

Furthermore, realize that during Contractor Resolve, the
contractor provides the correct result, signed and time-
stamped before the job deadline. This is one of the two
ways for the contractor to obtain the reward. The second
way would be if the boss never informed the bank about a
re-outsourcing of the job. This implies that all the results
matched, and the contractor deserves the reward as long as
she accepted the job by sending her verifiable escrow of the
fine before the fine timeout and returned the result correctly
before the job deadline, which can be checked via the time-
stamps. Since obtaining the same reward multiple times
(e.g., once from the boss, and once from the bank) is useless
due to one-use payments, this does not create a fairness
problem.

As for the boss to obtain fines via the Boss Resolve pro-
cess, he needs to prove via help from the timestamping
server that the contractor did not compute the correct out-
put. If the timestamping server already timestamped that
contractor’s result such that the time is late or the output is
incorrect while the signature verifies, then the bank pays
the contractor’s fine to the boss. Alternatively, if the contrac-
tor never even contacted the timestamping server with
proper results and a valid signature, then again the bank
pays the contractor’s fine to the boss.

Thus, if the contractor was diligent, and performed the
job correctly on time, then the timestamping server will
have the matching result, and the contractor will not be
fined during Boss Resolve, and will be guaranteed to obtain
her reward during Contractor Resolve. If the contractor
cheated, then the bank will pay the contractor’s fine to the
boss during Boss Resolve.

There is an interesting attack the contractors may try to
perform. Consider that the boss chose m ¼ 2 contractors,
and sent them vr1 and vr2 verifiable escrows of the reward.
Then, suppose he received back vf1 but not vf2. If the boss
did not receive vf2 until the fine timeout with a valid time-
stamp, it means it does not exist since otherwise the

644 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

timestamping server would have forwarded that to the
boss. At this point, the boss needs to outsource to a third
contractor, by sending vr3 and receiving vf3. But now
assume that contractors 2 and 3 are working together, such
that the contractor 3 sends the correct output (including
the inner state hash) to contractor 2. Observe that if con-
tractors 2 and 3 did not collude, it is improbable for con-
tractor 2 to send back a correct inner state hash for a job
that it does not know. Their goal is to obtain rewards such
that the boss ends up paying three rewards, even though
he outsourced the job to two contractors in total. Yet, real-
ize that for the contractors to obtain the reward, they must
have contacted the timestamping server such that: 1) the
verifiable escrow of the fine is timestamped before the fine
timeout, and 2) the correct result is timestamped before
the job timeout. Since the boss did not receive the vf2
before the fine timeout, he can rest assured that the bank
will not reward contractor 2.17

Finally, the boss may also try to trick the re-outsourcing
system, as best described via an example: Consider m ¼ 5
contractors are assigned to a task, where three of them
returned the correct answer (which can only be realized to
be correct after some re-outsourcing of the same job returns
five matching answers) and two of them an incorrect
answer (similarly realized later on). Then the boss re-out-
sourced, and now another three contractors returned the
correct answer, and another two of them returned an incor-
rect answer. Finally, after the third time the boss re-
outsourced the job, all five contractors returned the same
answer (and at this point the boss knows who returned the
correct answer in the previous outsourcings). Interestingly
enough, just to pay fewer rewards, the boss may try to claim
to the bank that this is indeed what happened: “When I first
outsourced, I received four incorrect answers and 1 correct
answer, and when I outsourced again, I received five correct
answers”. He will not lie about the number of incorrect
answers since he wants to obtain the fines, but he may lie
about the total number of correct answers. Luckily, this
attack is impossible in our protocol due to the use of unique
job ids, collision resistant hash functions, and the fact that
before each re-outsourcing the boss must contact the bank
and use the hash of the previous job id as the next job id.
This way, the boss cannot lie about the job identifiers and
the bank can easily check what actually happened.

As future work, we imagine a mechanism that can han-
dle fair payments for a bundle of jobs, instead of a single
job, increasing efficiency. It may be possible that a tree-
based payment mechanism enables payment of n bundled
jobs in logn steps, increasing the efficiency.

5.3 Setting the Timeouts

In this section we discuss the timeouts. Once the job and the
verifiable escrow of the reward is sent, the boss starts wait-
ing until the fine timeout. In normal operation, such a wait
should allow for the network delays, verification of the
reward escrow, preparation of the time escrow, and

timestamping. Overall, we imagine that several seconds
should be a realistic value, and can be set empirically. All
timeouts should be per-job timeouts (e.g., if the job is large
in size, network delays may require the fine timeout to be
large, and if the job is long in time, the associated job time-
out and the reward timeout need to be large).

The job timeout depends on the job. It may be several
minutes/hours/days. What is important is that, the reward
timeout is set as the job timeout, plus several seconds/
minutes for the boss to compare the results, send the wait
signal, and inform the bank.

For most of the cases, we imagine that the fine timeout
will be very insignificant compared to the job and reward
timeouts so that replacing a contractor does not necessitate
changing the job and reward timeouts. But, if the job is short,
then replacing a contractor may require setting different job
and reward timeouts for that contractor. In such a case, if this
new contractor did not return the result until close to the
reward timeout of the original group of contractors, then the
boss should signal the original group to wait, and inform the
bank, even though there is nomismatch.

Lastly, we assume that the job is expected to be re-
outsourced only so many times (e.g., five times). As we have
proven game-theoretically and experimentally, the number
of expected outsourcings of the same job is close to 1. Thus,
this would be a conservative system-wide value. What this
would enable is that no contractor waits indefinitely (e.g.,
the boss can send at most four wait signals to a contractor for
a particular job), and the timestamping server does not need
to keep an indefinitely-growing storage (e.g., it needs to store
timestamps associated with a particular job only for five
reward timeouts). Finally, we can tolerate honest failures up
to the timeouts, but leave explicit mechanism of separating
honest failures frommalicious actions as futurework.

6 PERFORMANCE EVALUATION

We implemented an outsourcing system that includes the
boss, honest contractors, and all four types of malicious con-
tractors. Note that once the system parameters are set
according to our theorems, all rational contractors will
become honest contractors, and hence there is no need to
implement them separately. We further implemented a
very simple mechanism to modify the actual jobs to also
return the hash of the inner state. Then, we evaluated our
solution under various scenarios, and confirmed that
our theoretical results hold. All source code is available on
our group’s web page [56].

6.1 Inner State Hash Performance

Remember that our goal is to keep an inner state hash of
an algorithm given a particular input. The main purpose
of an inner state hash is to distinguish between jobs: if a
different algorithm other than the original is employed,
or a different input is used, then the inner state hashes
should be different.

For implementing the inner state hash, we used the
AspectJ Eclipse extension. We created an aspect that hashes
all the inputs and return values of each method called in a
Java code. Outsourcing in our system is very simple. Once a
Java code containing the actual job is compiled with our

17. In a real implementation, to adjust for timing differences
between the boss and the timestamping server, we can let the boss wait
for a little more than the fine timeout to replace a contractor. Eventu-
ally, the bank will employ the timestamping server’s time value.

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 645

AspectJ aspect, it is ready to be outsourced. (Similarly, an
AspectC++ aspect can be used for C++ codes.) No changes
to the actual code is necessary. At the end of its run, the
program will output the hash of its inner state as well as its
original output.

We tested the overhead of this inner state hash computa-
tion on a machine with 2.27 GHz Intel CPU and 4 GB RAM,
using SHA-1 as the hash function. Tests were done on a
Windows 7, Eclipse version 3.7.0 and AspectJ version 1.6.12
on Java 7. If we follow the original proposal of Belenkiy
et al. [1] and first compute the whole inner state with a final
hash computation at the end, then the inner state would
grow very big, consuming memory and slowing down the
computation due to string concatenation operations. There-
fore, we programmed our aspect to let the inner state grow
up to a threshold, and each time the threshold length is
reached, we hashed the inner state to shrink it back. We
tested our setup with three computational tasks: a prime
number test, merge sort algorithm, and a pit mining task.

Fig. 2 shows the overhead of the inner state hash compu-
tation when compared to the original running time of these
three algorithms. It shows that the overhead the inner state
hash computation incurs is extremely small: around 0:2 per-
cent for all tasks using tweaked thresholds, incurring virtu-
ally no cost over running just the task itself.

6.2 Fully Colluding Contractors

Parameters. Using our implementation of the boss, the hon-
est contractors, and the four type of malicious contractors in
Java, we ran 1,000 jobs for each scenario, where each job
was outsourced to a group of two random contractors
among a pool of 60 contractors. All malicious contractors
were fully-colluding. All contractors were initiated with
credits twice the value of the fines. Note that using the inner
state hash, it does not matter which q-algorithm the lazy
and malicious contractors use, since its output will be differ-
ent from the original algorithm with high probability
(because q � 0 including the fact that the inner state hash
needs to be the correct as well).

Fig. 3 shows the percentage of extra work that different
fractions of fully-colluding malicious contractors may cause
the boss to perform. As the fine to reward ratio increases,
the extra work caused by the malicious contractors
decreases quickly.

Consider the results of Theorem 4.3 and its corollaries in
the light of Fig. 3. In the theorem, the E value indeed

corresponds to the values shown in the figure. Thus, the
figure shows that the boss can setE � 2% (e.g., by setting fine
to reward ratio as 20 even when a quarter of all contractors
are malicious). Therefore, according to the theorem, a job is
outsourced, in expectation, only 1:02 times. This corresponds
to employing, on average, 2:04 contractors for each job.
Including the 0:2 percent overhead of the inner state hash cal-
culation, the total overhead of our system per Corollary 4.3
is 2 percent in expectation, even with the existence of a large
percentage ofmalicious contractors in the system.

In comparison, consider Pantry verifiable computation
scheme [6]. Pantry converts a DNA substring matching job
that takes 0:2 seconds of local computation to 5:7 minutes of
outsourced computation, creating an overhead of 171;000
percent (and 71;560 percent overhead on average for the
five different tasks they measured). Thus, for correctness of
the answer, using our system results in more than four
orders of magnitude better performance than employing
Pantry [6] verifiable computation. But remember that our
setting is different. Pantry (or newer systems such as Gep-
petto [57]) outsources to one contractor, whereas we out-
source to multiple contractors and pay rewards and fines.
While the boss’s verification time is small in those works
and is extremely small in our work, we focus on the over-
head of outsourcing the job versus performing it locally.
The time required at the prover (i.e., the contractor) side in
the verifiable computation works is as discussed above, and
thus their performance degradation is extreme compared to
our neglectable overhead. Even when the contractor is a
powerful cloud server, we do not expect it to have 71;560
percent more resources than the boss.

Fig. 4 compares the theoretical results with the experi-
mental results, for a fixed fine to reward ratio of 30. Fig. 4a
shows the percentage of incorrect results accepted by the
boss, as a result of all the contractors that are assigned to the
same job being colluders. The figure proves that the theoret-
ical results of Theorem Theorem 7.1 closely match the real-
ity. It also shows that as the group size, meaning the
number of contractors employed for the same job, increases,
the boss accepts almost no incorrect results.

Interestingly, while the increase in the group size dimin-
ishes the possibility of accepting incorrect results, it may
increase the extra work required. The reason is that a larger
group has a higher probability of containing at least one
malicious contractor. Fig. 4b validates the results of

Fig. 2. Percentage overhead of computing inner state hash that is neces-
sary for the boss’s comparisons.

Fig. 3. Extra work due to malicious contractors, based on experiments.

646 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

Theorem 4.2 and Corollary 4.3. The main reason that the
experimental results are slightly above the theoretical ones
in this figure is due to the fact that we provide starting bal-
ance equal to twice the fine in our experiments.

6.3 Experiments with Mixed Fraction of Malicious
Contractors

In this section, we use our implementation to present results
involving a mix of various types of malicious contractors.
To present a realistic, but still overly cautious scenario, we
used figures from Symantec [58] and Panda Labs [59].
Panda Labs report says worldwide infection rate is around
32 percent. Thus, we take this as the total fraction of mali-
cious users in our system. Symantec ranks the top 10 mal-
ware, where the top malware caused 6:9 percent of all
infections. Let us assume this top malware corresponds to
the most destructive scenario, and all of its users are fully-
colluding malicious contractors. Thus, in our test, we let
32% � 6:9% ¼ 2:2% of all users to be fully-colluding. The
next best malware caused 5:1 percent of infections. Let us
take this as the semi-colluding malicious contractor fraction.
Hence, overall we let 32% � 5:1% ¼ 1:6% of all users to be
semi-colluding. Out of the remaining 32%� 2:2% �
1:6% ¼ 28:2%, we let half to be semi-independent and the
other half to be fully-independent.

Parameters. To simulate this scenario, we outsource a job to
100 contractors, two of which are fully-colluding, two are
semi-colluding, 14 are semi-independent, and 14 are fully-
independent. The remaining contractors act diligently, since
they are incentivized to do so. We keep the group size as 2 to
allow the possibility that colludingmalicious contractors may
make up the whole group, and outsource 1,000 jobs. All con-
tractorswere initiatedwith credits twice the value of the fines.

Fig. 5 shows that with proper fine to reward ratio set-
tings, the boss obtains more than 99:9 percent correct
results with only 3 percent extra work. At this point we
remind ourselves that this scenario still assumes a highly
exaggerated setting where around one third of the contrac-
tors are malicious in one way or the other, and a good frac-
tion of them are colluding or semi-independent.

7 CONCLUSIONS

We analyzed the outsourced computation setting where the
boss outsources a job to multiple contractors, rewarding the

diligent ones and fining the lazy ones. We also presented,
for the first time, a fair mechanism for the payment of
rewards and fines using a trusted bank and a timestamping
server, assuming both the boss and the contractors may try
to cheat the payment mechanism.

We implemented our outsourcing system, including the
boss and the contractors (both honest and malicious). Our
implementation not only helped verify our theoretical
results, but also enabled presentation of results in a mixed
malicious contractor setting, which is hard to analyze theo-
retically. Our suggested system parameters are a fine to
reward ratio of 20 to 30, and outsourcing each job to a group
of two to four contractors. Note that such small number of
random contractors among a pool can easily be found in
peer-to-peer settings, and also among 20-30 different cloud
service providers. Moreover, picking a new group should
be a very rare event, as proven in the paper.

We showed that our solution, in expectation, incurs only
2 percent overhead against running a task locally, even
when a quarter of all contractors are malicious and fully
colluding. We also presented that, in realistic but overly
cautious experiments, by outsourcing each job to only two
contractors, the boss obtains more than 99:9 percent correct
results with only 3 percent extra work. This is by far the
best known efficiency when compared to the related work
achieving such high levels of correctness guarantees.

Fig. 4. Comparison of theoretical and experimental results.

Fig. 5. Extra work done and incorrect results accepted in mixed types of
malicious contractor experiments.

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 647

APPENDIX

Theorems from [1] presented for the sake of convenience:

Theorem 7.1. If the fraction of colluding contractors in the sys-
tem is g, the probability that the boss accepts an incorrect result
is at most gm.

Note that the theorem above applies to all types of mali-
cious contractors in our case, except fully-independent ones.

Lemma 7.1. Let P ðk;mÞ ¼ m
k

� �
gkð1� gÞm�k be the probability

that there are exactly k colluders in a group of size m, assum-
ing a g fraction of all contractors are colluding. Furthermore,
let A ¼ Pm

k¼1 P ðk;mÞ, be the probability that there is at least
one colluder in the group. Then, A ¼ 1� ð1� gÞm. Finally,
let B ¼ Pm

k¼1 P ðk;mÞk. Then, B ¼ gm.

ACKNOWLEDGMENTS

The author acknowledges the support of T€UB_ITAK, the Sci-
entific and Technological Research Council of Turkey,
under project number 111E019, as well as European Union
COST Action IC1306. The author also thanks Said Tahsin
Dane, Onur Y€uksel, Ezgi Kurt, and Egeyar €Ozlen Ba�gcıo�glu.

REFERENCES

[1] M. Belenkiy, M. Chase, C. Erway, J. Jannotti, A. K€upç€u, and A.
Lysyanskaya, “Incentivizing outsourced computation,” in Proc.
3rd Int. Workshop Econ. Netw. Syst, 2008, pp. 85–90.

[2] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge com-
plexity of interactive proof systems,” SIAM J. Comput., vol. 18,
p. 208, 1989.

[3] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield
nothing but their validity or all languages in NP have zero-knowl-
edge proof systems,” J. ACM, vol. 38, pp. 690–728, 1991.

[4] M. Bellare andO. Goldreich, “On defining proofs of knowledge,” in
Proc. 12th Annu. Int. Cryptol. Conf. Adv. Cryptol., 1992, pp. 390–420.

[5] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in
Proc. 30th Annu. Conf. Adv. Cryptol., 2010, pp. 465–482.

[6] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M.
Walfish, “Verifying computations with state,” Cryptology ePrint
Archive, Rep. 2013/356, 2013.

[7] M. Walfish and A. J. Blumberg, “Verifying computations without
reexecuting them: From theoretical possibility to near practicality,”
Electron. Colloq. Comput. Complexity, ECCC TR13-1265, 2014,
https://dl.acm.org/citation.cfm?id=2641562

[8] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to delegate
and verify in public: Verifiable computation from attribute-based
encryption,” in Proc. 9th Theory Cryptography Conf., 2012, pp. 422–
439.

[9] A.-R. Sadeghi, T. Schneider, and M. Winandy, “Token-based
cloud computing,” in Proc. 3rd Int. Conf. Trust Trustworthy Com-
put., 2010, pp. 417–429.

[10] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating com-
putation: Interactive proofs for muggles,” in Proc. 40th Annu.
ACM Symp. Theory Comput., 2008, pp. 113–122.

[11] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister, “Verifiable
computation with massively parallel interactive proofs,” in Proc.
4th USENIX Conf. Hot Topics Cloud Comput., 2012, p. 12.

[12] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” in Proc. IEEE Symp. Secu-
rity Privacy, 2013, pp. 238–252.

[13] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (some-
times),” in Proc. Netw. Distrib. Syst. Security Symp., 2012.

[14] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M.
Walfish, “Taking proof-based verified computation a few steps
closer to practicality,” in Proc. 21st USENIX Conf. Security Symp.,
2012, p. 12.

[15] S. Bugiel, S. N€urnberger, A.-R. Sadeghi, and T. Schneider, “Twin
clouds: Secure cloud computing with low latency,” in Proc. 12th
IFIP TC 6/TC 11 Int. Conf. Commun. Multimedia Security, 2011,
pp. 32–44.

[16] D. Benjamin and M. J. Atallah, “Private and cheating-free out-
sourcing of algebraic computations,” in Proc. 6th Annu. Conf. Pri-
vacy, Security Trust, 2008, pp. 240–245.

[17] D. Fiore and R. Gennaro, “Publicly verifiable delegation of large
polynomials and matrix computations, with applications,” in
Proc. ACM Conf. Comput. Commun. Security, 2012, pp. 501–512.

[18] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in Proc. 31st Annu. Conf. Adv.
Cryptol., 2011, pp. 111–131.

[19] Y. Wang, J. Wei, and M. Srivatsa, “Result integrity check for Map-
Reduce computation on hybrid clouds,” in Proc. IEEE 6th Int.
Conf. Cloud Comput., 2013, pp. 847–854.

[20] M. J. Atallah, F. Kerschbaum, and W. Du, “Secure and private
sequence comparisons,” in Proc. ACM Workshop Privacy Electron.
Soc., 2003, pp. 39–44.

[21] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing
of linear programming in cloud computing,” in Proc. IEEE INFO-
COM, 2011, pp. 820–828.

[22] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Proc. 2nd Int. Conf. Theory Cryp-
tography, 2005, pp. 264–282.

[23] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for
secure outsourcing of modular exponentiations,” in Proc. 17th
Eur. Symp. Res. Comput. Security, 2012, pp. 541–556.

[24] M. Guirguis, R. Ogden, Z. Song, S. Thapa, and Q. Gu, “Can you
help me run these code segments on your mobile device?” in Proc.
IEEE GLOBECOM, 2011, pp. 1–5.

[25] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” J. ACM, vol. 32, pp. 824–840, 1985.

[26] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, and C.
Porth, “BAR fault tolerance for cooperative services,” in Proc. 20th
ACM Symp. Operating Syst. Principles, 2005, pp. 45–58.

[27] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M.
Dahlin, “BAR gossip,” in Proc. Operating Syst. Des. Implementation,
2006, pp. 191–204.

[28] P. Golle and I. Mironov, “Uncheatable distributed computations,”
in Proc. Conf. Topics Cryptol.: The Cryptographer’s Track RSA, 2001,
pp. 425–440.

[29] W. Du, M. Murugesan, and J. Jia, “Uncheatable grid computing,”
in Algorithms and Theory of Computation Handbook. Boca Raton, FL,
USA: CRC Press, 2010.

[30] L. F. Sarmenta, “Sabotage-tolerance mechanisms for volunteer
computing systems,” Future Gener. Comput. Syst., vol. 18, no. 4,
pp. 561–572, 2002.

[31] D. Szajda, B. Lawson, and J. Owen, “Hardening functions for large
scale distributed computations,” in Proc. IEEE Symp. Security Pri-
vacy, 2003, pp. 216–224.

[32] D. Szajda, B. Lawson, and J. Owen, “Toward an optimal redun-
dancy strategy for distributed computations,” in Proc. IEEE Clus-
ter Comput., 2005, pp. 1–11.

[33] F. Monrose, P. Wyckoff, and A. Rubin, “Distributed execution with
remote audit,” in Proc. Netw. Distrib. Syst. Security Symp., 1999.

[34] R. Nix and M. Kantarcioglu, “Contractual agreement design for
enforcing honesty in cloud outsourcing,” in Proc. 3rd Int. Conf.
Decision Game Theory Security, 2012, pp. 296–308.

[35] Y. Zhang and M. van der Schaar, “Reputation-based incentive
protocols in crowdsourcing applications,” in Proc. IEEE INFO-
COM, 2012, pp. 2140–2148.

[36] C.-J. Ho, Y. Zhang, J. Vaughan, and M. Van Der Schaar, “Towards
social norm design for crowdsourcing markets,” in Proc. AAAI
Workshops, 2012.

[37] M.-C. Yuen, I. King, and K.-S. Leung, “A survey of crowdsourcing
systems,” in Proc. IEEE SocialCom, 2011.

[38] Y. Zhao and Q. Zhu. (2014). Evaluation on crowdsourcing
research: Current status and future direction. Inf. Syst. Frontiers
[Online]. 16(3), pp. 417–434. Available: http://dx.doi.org/
10.1007/s10796-012-9350-4

[39] B. Carbunar and M. V. Tripunitara, “Payments for outsourced
computations,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 2,
pp. 313–320, Feb. 2012.

[40] X. Chen, J. Li, and W. Susilo, “Efficient fair conditional payments
for outsourcing computations,” IEEE Trans. Inf. Forensics Security,
vol. 7, no. 6, pp. 1687–1694, Dec. 2012.

648 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2017

http://dx.doi.org/10.1007/s10796-012-9350-4
http://dx.doi.org/10.1007/s10796-012-9350-4

[41] D. Molnar, “The seti@home problem,” ACM Crossroads, Sep. 2000.
[42] M. van Dijk and A. Juels, “On the impossibility of cryptography

alone for privacy-preserving cloud computing,” in Proc. 5th USE-
NIX Conf. Hot Topics Security, 2010, pp. 1–8.

[43] J. R. Douceur, “The sybil attack,” in Proc. Revised Papers 1st Int.
Workshop Peer-to-Peer Syst., 2002, pp. 251–260.

[44] D. Chaum, B. den Boer, E. van Heyst, S. Mjlsnes, and A. Steen-
beek, “Efficient offline electronic checks (extended abstract),” in
Proc. Workshop Theory Appl. Cryptographic Techn. Adv. Cryptol.,
1989, pp. 294–301.

[45] D. Chaum, “Blind signatures for untraceable payments,” in Proc.
Adv. Cryptol., 1983, pp. 199–203.

[46] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange
of digital signatures,” IEEE Sel. Areas Commun., vol. 18, no. 4,
pp. 591–610, Apr. 2000.

[47] A. K€upç€u, and A. Lysyanskaya, “Usable optimistic fair exchange,”
Comput. Netw., vol. 56, pp. 50–63, 2012.

[48] J. Camenisch, A. Lysyanskaya, and M. Meyerovich, “Endorsed
e-cash,” in Proc. IEEE Symp. Security Privacy, 2007, pp. 101–115.

[49] J. Camenisch and V. Shoup, “Practical verifiable encryption and
decryption of discrete logarithms,” in Proc. 23rd Annu. Int. Cryptol.
Conf., 2003, pp. 126–144.

[50] H. Pagnia and F. C. Gartner, “On the impossibility of fair
exchange without a trusted third party,” Dept. Comput. Sci.
Darmstadt Univ. Technol., Darmstadt, Germany, Tech. Rep.
TUD-BS-1999-02, 1999.

[51] A. K€upç€u, “Distributing trusted third parties,” ACM SIGACT
News Distrib. Comput. Column, vol. 44, pp. 92–112, 2013.

[52] A. K€upç€u and A. Lysyanskaya, “Optimistic fair exchange with
multiple arbiters,” in Proc. 15th Eur. Conf. Res. Comput. Security,
2010, pp. 488–507.

[53] A. K€upç€u, “Usable optimistic fair exchange,” in Proc. Cryptogra-
phers Track RSA Conf., 2010, pp. 252–267.

[54] C. Cachin(ed.), “Specification of dependable trusted third parti-
es,” IBMMAFTIA deliverable D26, Tech. Rep., 2001.

[55] A. K€upç€u, “Official arbitration with secure cloud storage
application,” Comput. J., vol. 58, no. 4, pp. 831–852, 2015.

[56] (2015). Cryptography, Security, and Privacy Research Group at
Koç University, https://crypto.ku.edu.tr [Online]. Available:
http://crypto.ku.edu.tr

[57] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M.
Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile verifiable
computation,” in Proc. IEEE Symp. Security Privacy, 2015, pp. 253–
270.

[58] Symantec, “Internet security threat report 2013,” 2013.
[59] PandaLabs, “Annual report 2012 summary,” 2012.

Alptekin K€upç€u received the PhD degree from
Brown University Computer Science Department
in 2010. Since then, he has been an assistant
professor at Koç University, and leading the
Cryptography, Security & Privacy Research
Group he founded. His research mainly focuses
on applied cryptography, and its intersection with
cloud security, privacy, peer-to-peer networks,
and game theory and mechanism design. He has
also led the development of the Cashlib crypto-
graphic library, which is available as open source

online. He has various accomplishments including three patents
granted, eight funded research projects (for six of which he was the prin-
cipal investigator), two European Union COST Action management
committee memberships, a Royal Society Newton Advanced Fellowship,
and Koç University Teaching Innovation Grant. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KÜPÇÜ: INCENTIVIZED OUTSOURCED COMPUTATION RESISTANT TO MALICIOUS CONTRACTORS 649

https://crypto.ku.edu.tr
http://crypto.ku.edu.tr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

