
Generic Efficient Dynamic Proofs of Retrievability

Mohammad Etemad
metemad@ku.edu.tr

Crypto Group, Koç University
İstanbul, Turkey

Alptekin Küpçü
akupcu@ku.edu.tr

Crypto Group, Koç University
İstanbul, Turkey

ABSTRACT
Together with its great advantages, cloud storage brought
many interesting security issues to our attention. Since
2007, with the first efficient storage integrity proto-
cols Proofs of Retrievability (PoR) of Juels and Kaliski,
and Provable Data Possession (PDP) of Ateniese et al.,
many researchers worked on such protocols.

The difference among PDP and PoR models were
greatly debated. The first DPDP scheme was shown by
Erway et al. in 2009, while the first DPoR scheme was
created by Cash et al. in 2013. We show how to obtain
DPoR from DPDP, PDP, and erasure codes, making us
realize that even though we did not know it, we could
have had a DPoR solution in 2009.

We propose a general framework for constructing DPoR
schemes that encapsulates known DPoR schemes as its
special cases. We show practical and interesting opti-
mizations enabling better performance than Chandran
et al. and Shi et al. constructions. For the first time,
we show how to obtain constant audit bandwidth for
DPoR, independent of the data size, and how the client
can greatly speed up updates with O(λ

√
n) local stor-

age (where n is the number of blocks, and λ is the secu-
rity parameter), which corresponds to ∼ 3MB for 10GB
outsourced data, and can easily be obtained in today’s
smart phones, let alone computers.

1. INTRODUCTION
In a data outsourcing scheme, the client expects an

authenticated storage and guaranteed retrievability [6,
22]. The former means she wants each data access to
return the correct value; i.e., the most recent version of
data written by the client herself. The latter means the
client wants to make sure her data is retrievable; i.e., she

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CCSW’16, October 28 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4572-9/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996429.2996439

can retrieve all her data correctly. These authenticity
and retrievability checks should be much more efficient
than downloading the whole data.

The authenticated storage can be provided easily by
computing a digest (e.g., hash) of data and keeping it
locally after transferring data to the server. But, the
client needs to download the whole data and check it
against the digest to investigate the authenticity of her
data, which is prohibitive given current trends of out-
sourcing tens of gigabytes of data, even by home users.

Static techniques. Juels and Kaliski [16] proposed
the first scheme, called proofs of retrievability (PoR),
to provide such a storage. Before outsourcing her data,
the client encodes it with an erasure-correcting code
(ECC), which brings some redundancy while ensuring
that the server should manipulate a significant part of
the outsourced (encoded) data to impose a data loss or
corruption. However, such a misbehavior will be caught
with a very high probability.

Dynamic techniques. Early PoR schemes support
only static data [16, 21, 11] and do not support efficient
updates on the outsourced data. In fact, secure and
efficient update is the main problem with PoR schemes.

Cash et al. [6] provided the first efficient and se-
cure dynamic PoR scheme using the Oblivious RAM
(ORAM) [15]. Later improvements [22, 8], at a high
level, separate the updated data from the original data,
and store the update logs in a hierarchical data struc-
ture similar to ORAM.

On the other hand, the first dynamic PDP protocol
was created by Erway et al. [12] in 2009; four years
before the first dynamic PoR. The reason is that, since
PDP-type schemes do not employ erasure-correcting codes,
the abovementioned problems did not exist. Interest-
ingly enough, we show for the first time, how dynamic
PDP and dynamic PoR schemes are related, using a
general framework.

(D)PDP and (D)PoR differences. The security
guarantee a PDP gives is weaker than a PoR. While
the PoR guarantees retrieving the whole data, PDP
only guarantees the client can retrieve most of the out-
sourced data. Though erasure-correcting codes help
providing full retrievability, they bring the above prob-
lems (discussed in more detail in Section 2).

85

http://dx.doi.org/10.1145/2996429.2996439

Our contributions. We analyze security require-
ments of a dynamic PoR scheme, propose a generic
dynamic PoR scheme construction framework encom-
passing existing schemes as special cases, and propose
various optimizations.

1.1 Related Work
PoR was first proposed by Juels and Kaliski [16] for

static data, supporting only a limited number of chal-
lenges. Shacham and Waters [20] gave the first PoR
schemes fully secure against arbitrary adversaries, sup-
porting unlimited number of challenges. Bowers et al.
[5] proposed a theoretical framework for PoR design.
Dodis et al. generalized the static PoR schemes [11].

PDP, first proposed by Ateniese et al. [1], is a very
close line of work that provides probabilistic guarantees
of data possession using a challenge-response mecha-
nism. Similar schemes were later proposed targeting
public verifiability [29, 26] and availability [4, 10]. Curt-
mola et al. [9] integrated PDP with ECC to enhance the
possession guarantee in robust data possession scheme.

Dynamic PDP. Ateniese et al. [2] gave a dynamic
PDP scheme where they pre-compute and store at the
server a limited number of random challenges with the
corresponding answers. Erway et al. [12] proposed the
first fully dynamic PDP scheme with O(log(n)) update
and audit complexity, where n is the number of blocks.
Later variants supply additional properties [3], use other
data structures [27, 25], distribute and replicate [14], or
enhance efficiency [13]. The DPDP scheme definition is
given in Appendix A.

Dynamic PoR. Zhen et al. [19] and Zheng and Xu
[30] claimed to give dynamic PoR schemes, but actually
dynamic PDP schemes were given. Similarly, the em-
phasis of [27] is on data integrity while retrievability is
claimed. The main reason is that, in our opinion, the
difference between PDP and PoR was not understood
well at that point. We also contribute in this regard.

Stefanov et al. [23] proposed Iris as a dynamic PoR
scheme. However, Iris is not a fully-dynamic PoR scheme
as it stores the erasure-coding data locally (on a trusted
party called the portal).

The first really dynamic PoR scheme with full se-
curity definition and proof was proposed by Cash et
al. [6, 7]. The scheme has constant client storage and
polylogarithmic communication and computation. As a
building block, they use an ORAM satisfying a special
property called next-read-pattern-hiding.

In their dynamic PoR scheme, Chandran et al. [8]
erasure-coded the data, and outsourced it inside a hi-
erarchical data structure similar to ORAM. Later up-
dates are also erasure-coded and stored in the same
data structure. Reading through that structure requires
O(n) cost, hence, they stored the plain data and subse-
quent updates in another similar structure.

Shi et al. [22] proposed an efficient dynamic PoR
scheme similar to [8]. The scheme is later improved by
outsourcing some parts of computation to the server,

reducing the communication and client computation.
Relationship among these schemes. Shacham

and Waters [21] showed a PoR scheme can be obtained
by employing a PDP scheme with erasure-correcting codes.
We will employ their result in our paper.

The first dynamic PDP schemes [12, 27], providing
authenticity, appeared in 2009, while the first dynamic
PoR schemes [6, 8, 22], with retrievability guarantee,
were proposed in 2013. By analyzing their differences
and similarities, we show how to tie these schemes to-
gether. In fact, a DPoR scheme can be built using
(black-box access to) DPDP and PoR (which can be
built using PDP and erasure-correcting codes [21]). This
interestingly reveals that we could have had DPoR schemes
when the first DPDP schemes appeared.

1.2 Preliminaries
We use x← X to denote x is sampled uniformly from

the set X, |X| to represent the number of elements in X,
and || to show concatenation. PPT denotes probabilis-
tic polynomial time, and λ is the security parameter. By
log, we mean the footprint an update operation leaves,
while log(.) indicates logarithm calculation.

A function ν(λ) : Z+ → [0, 1] is called negligible if
∀ positive polynomials p, ∃ a constant c such that
∀ λ > c, ν(λ) < 1/p(λ). Overwhelming probability
is greater than or equal to 1 − ν(λ) for some negligi-
ble function ν(λ). Efficient algorithms have expected
running time polynomial in the security parameter.

Erasure-correcting codes deal with correcting er-
rors that occur during data transmission over a noisy
channel, or data storage in a device. An (n, k, d)Σ

erasure-correcting code over a finite alphabet Σ is a pair
of efficient encoding and decoding algorithms (encode,
decode) such that encode : Σk → Σn transforms a
message m = (m1,m2, ...,mk) ∈ Σk into a codeword
c = (c1, c2, ..., cn) ∈ Σn, and decode : Σn−d+1 → Σk

recovers the original message from a codeword in the
presence of at most d−1 erasures.
A PoR scheme is defined as follows [16, 21]:

• (pk, sk) ← Kg(1λ): is a randomized algorithm that
generates a public-private key pair (pk, sk) given the
security parameter λ.

• (M ′, τ) ← St(sk,M): is a randomized algorithm
that takes the secret key sk and a file M as input
and produces a processed file M ′ and a tag τ .

• π ← P(pk,M ′, τ): is an algorithm run by the server
that takes the public key pk, the outsourced file M ′,
and the tag τ as input and generates a proof π.

• accept/reject ← V(sk, pk, π): is an algorithm run
by the client to verify the proof coming from server.
Given the secret and public keys and the proof π, it
outputs an acceptance or a rejection signal.

2. OVERVIEW

86

Observations. By investigating the previous work,
the problems they pointed to, and the given solutions,
we made the following observations that show the con-
ditions an efficient and secure dynamic PoR scheme
should satisfy.

• Observation 1. To ensure retrievability of the out-
sourced data, erasure-correcting codes are used. Us-
ing an (n, k, d)Σ erasure-correcting code, if the ad-
versary manages to manipulate a small part of the
data (i.e., up to d − 1 out of n blocks), the data
retrievability is still guaranteed [16, 21, 9, 23, 8].

• Observation 2. If the adversary manipulates a sig-
nificant part of the data (i.e., more than d-1 blocks),
it cannot be recovered using the erasure-correcting
code. An integrity checking mechanism is needed to
catch such an adversary, with high probability [12,
9, 23]. Note that the integrity checking mechanism
needs to detect only such significant manipulations.

• Observation 3. A simple update on erasure-coded
data is not enough [6]:

– If a single update affects a small part of the en-
coded data (i.e., a locally updatable code), the
server learns and later can erase the whole up-
date without a high probability of getting caught.
This option is not secure.

– If a single update affects a huge part (the whole)
of the encoded data, requiring ∼ O(n) cost, the
server learns almost nothing about the update
locations and cannot attack them. But such up-
dates are not efficient.

• Observation 4. Therefore, it is better to store the
update information separately, rather than applying
the updates on the encoded data. Thus, there should
be two parts of server storage: one part stores the
encoded original data, and the other (the log store)
stores the update information. The log store, which
is empty at the outset, can grow to be as much as
linear in the data size. When the log store becomes
full, the updates it holds will be applied on the origi-
nal data. This rebuild operation generates the latest
version of data and empties the log store [8, 22].

• Observation 5. Since the log store can be as large
as (linear in the size of) the original data, the effi-
ciency problem is again encountered. The remedy is
to use a hierarchical data structure [6, 8, 22]. Each
level is erasure-coded, updated, audited, and possi-
bly merged into the next level via reshuffling.

• Observation 6. To read the latest version of some
data, we need to decode the encoded data and apply
all the logs, which is an O(n) operation. Therefore,
an uncoded version of data, protected by a dynamic
memory checking scheme [8, 22], is stored at the

server. This frees the read operation from struggling
with the erasure-correcting codes. For read opera-
tions, the membership proofs of the memory check-
ing scheme serves as the authenticity proof (i.e., if
the proof is accepted, we can be assured with high
probability that the read data is kept intact on the
server [12]). The memory checking scheme must also
be dynamic to support updates.

• Observation 7. It is enough that the memory check-
ing scheme is only responsible for authenticity of the
data read, and hence the read operations need not
be oblivious. This reveals the access pattern of the
client, but access privacy is not a requirement of the
dynamic PoR definition [22]. The log store, on the
other hand, needs oblivious operations, due to the
observations above. We also observe that the log
store can be append-only, since update logs are only
appended with each update, unlike the data pro-
tected by the memory checking scheme, since the
uncoded data is actually updated.

• Observation 8. ORAM performs both update and
read operations in a similar way that an adversary
cannot distinguish them. However, as our read op-
erations will not be run through the ORAM, there
is no need to perform the extra heavy reshufflings.
This is an important observation that we utilize to
construct an efficient structure for storing the logs.

Overview of Our Solution. In our framework, any
update operation leaves a footprint, which is called a
log. If these logs are kept securely and erasure-coded,
even in case of any data loss, the data can be recovered
using the logs. This is conceptually similar to what
a database management system or a journal-based file
system performs in the background. However, a main
difference is that we do not trust the server to keep the
logs correctly, so we should audit the server.

Our scheme has two parts: a data structure (an au-
thenticated log scheme given in Section 3) for keep-
ing update logs securely and providing the retrievabil-
ity guarantee, and a dynamic memory-checking scheme
(e.g., DPDP [12]) that responds to read queries pro-
viding authenticity, as shown in Figure 1. The update
operations affect both parts.

Initially, the client has some original data, which is
stored twice at the server: once in the memory-checking
scheme (e.g., DPDP), and once in the log store in an
erasure-coded and garbled manner. Later, to update
(insert, delete, or modify) a data block, the client pre-

Figure 1: Our model.

2. OVERVIEW

87

pares the corresponding command and directs it to the
dynamic memory-checking part for execution. In par-
allel, she prepares the respective update log, to be ap-
pended to the existing logs in the log store.

During normal execution, read operations are responded
by the memory-checking scheme equipped with authen-
ticity proofs. However, in case of any data loss in the
memory-checking part such that the read operation re-
turns incorrect responses (or nothing), which is detected
via the proof, the log store is used to recover the re-
quested data. If it cannot be recovered even using the
logs, the server is misbehaving, and this will be caught
with high probability. Since the log store supports re-
trievability, it is enough that audits are performed over
that part. Answers to both the read and audit are ac-
companied with cryptographic proofs to be verifiable.

3. ERASURE-CODED AUTHENTICATED
LOG

The log store plays an important role in our scheme.
It is an authenticated data structure that inspects in-
tegrity and guarantees retrievability of the logs, which
in turn, guarantee retrievability of the outsourced data.
We propose an Erasure-Coded Authenticated Log (ECAL)
scheme to serve these goals. It erasure-codes the logs (to
guarantee retrievability) and garbles the result (e.g., by
encrypting and permuting the data randomly) to make
locating any part of original data difficult for the server.

Any scheme supplying retrievability and authenticity
can be used to store the update logs. In fact, what
we need is a (static) PoR scheme with efficient append
and audit, without caring about read efficiency (it is
used rarely, only for lost data recovery). A hierarchical
memory where each level employs a (possibly distinct)
instance of PoR is preferred for efficiency.

Each update on the outsourced data leaves a log. Re-
gardless of the update locations on the data, the new
logs will be appended to the end of the existing logs, i.e.,
the logs are append-only. Outsourcing all these logs at
a rather safe place using ECAL guarantees that if the
original data faced integrity problems, it can be recov-
ered through the logs. Hence, the client needs to check
integrity of logs over time, helping her induce that ei-
ther the data is fully retrievable, or the server is misbe-
having. The definitions below follow closely those of [6].

Definition 3.1 (ECAL). An erasure-coded auth-
enticated log scheme includes the following PPT proto-
cols between a stateful client and a stateful server:

• LInit(1λ, 1w, n,M): The client starts up this proto-
col to initialize an ECAL memory on the server, pro-
viding as input the security parameter λ, the word
size w, and the memory size n. (The memory need
not be bounded.) The initial data M is also out-
sourced into the initialized memory.

• LAppend(l): The client uses this protocol to ask the
server append the log l to the already-stored logs.

• accept/reject ← LAudit(): The client specifies a
challenge vector and uses this protocol to check if
the server keeps storing the logs correctly (i.e., the
logs are retrievable). She finally emits an acceptance
or a rejection signal.

Both the client and the server create their own local
states during execution of the LInit protocol. These
local states will be used and updated during execution
of the other protocols following LInit. If the client has
some initial data, she can send them using LInit as
initial data, or she can append them one-by-one using
LAppend. LInit and LAppend do not include verifica-
tion. If the server misbehaves, it will be caught by the
subsequent LAudit executions.

3.1 ECAL Security Definitions
Correctness considers the honest behavior of the

(client and the) server in a protocol execution. A scheme
is correct if the following is satisfied with probability 1
over the randomness of the client: Reading the ith log
results in a value v such that v is the ith value that has
already been written by an LAppend protocol. If less
than i logs exists, it returns ⊥. Moreover, the LAudit
protocol results in an acceptance.

Authenticity. If the server deviates from honest
behavior by providing proofs while he has manipulated
the challenged part of data, the client should detect it
with overwhelming probability. The authenticity game
AuthGameS̃(λ) between a challenger and a malicious server

S̃ is defined as:

• Initialization. The challenger starts the LInit pro-
tocol to initialize the environment. The challenger
also starts a copy of the honest client C and the hon-
est server S, and runs LInit among them.

• Setup. The server S̃ asks the challenger to start a
protocol ∈ {LAppend, LAudit} by providing the re-
quired information. The challenger starts two par-
allel executions of the same protocol between C and

S, and between itself (acting as the client) and S̃,
using the information provided by the server. This
is repeated polynomially-many times.

• Challenge. S̃ sends an audit request to the chal-
lenger, who initiates two parallel LAudit protocols,

one between C and S, and one between itself and S̃,
using the same randomness.

S̃ wins the game if his answer is accepted while it dif-
fers from that of S; in such a case the game returns 1.

Definition 3.2 (Authenticity). An ECAL scheme
is authentic if no PPT adversary can win the above
game with probability better than negligible in λ.

Retrievability. We want the ECAL to guarantee
that if a malicious adversary performs more than d− 1

88

erasures within some level (Each level may have a differ-
ent d parameter if they have different sizes.), he should
not pass the subsequent audit: If a malicious adversary
passes the audit with a non-negligible probability, he
should have sufficient knowledge of all outsourced logs.
The knowledge is formalized via existence of an efficient
extractor that, given black-box access to the malicious
adversary, can retrieve all logs L. The retrieva- bility
game among a challenger C, an extractor, and a mali-

cious server S̃ is:

• Initialization. C acts as an honest client and starts
the LInit with S̃.

• Setup. S̃ adaptively asks C to start a protocol ∈
{LAppend, LAudit} by providing the required infor-

mation. C acts as the client in those protocols. S̃ can
repeat this process polynomially-many times. Call
the final states of the client and malicious server,
stC and stS̃ , respectively. Call the final version of
the uncoded data, considering all LAppend opera-
tions performed, D.

• Challenge. The extractor repeats the LAudit pro-

tocol polynomially-many times with S̃ in final state
stS̃ (via rewinding). Call the extracted data D′.

Definition 3.3 (Retrievability). An ECAL scheme
provides retrievability if there exists a PPT extractor

such that for all PPT S̃, if S̃ passes the LAudit proto-
cols with non-negligible probability, then at the end we
have D′ = D with overwhelming probability.

The ECAL security proofs are given in Appendix C.

3.2 Generic ECAL Construction
Assume Σm={0, 1}w′

and Σl={0, 1}w are two finite
alphabets showing the message space and log space,
respectively. There are two types of memory on the
server. Buff∗, whose content is fixed between two re-
build operations and is the same among different con-
figurations, stores the logs corresponding to the client’s
initial data. The other memory, Buff, stores the logs of
the subsequent updates on the data, and its efficiency
affects the whole scheme.

The client initializes a PoR instance P=(Kg,St,P,V),
puts the original data M = (m1, ...,mk) ∈ Σkm inside
it, and outsources the result to the server. The result
will be stored at Buff∗ and will not be changed until
the next rebuild. Later, she performs updates on the
original data, and outsources their logs at the Buff in
a way that the adversary cannot locate or differenti-
ate them form the already-existing logs. The content
of Buff changes as new logs are outsourced. The client
wants to rest assured that the logs are retrievable, which
means that she can rebuild the final (or any intermedi-
ate) version of her data.

We present each update log as a single block in Σl,
therefore, each data insertion, deletion, or modification

appends a new block to the existing logs. Each update
log contains the location on the plain data, the oper-
ation type, and the new value to be stored. Indeed, a
log is of the form iOv, where i is the index on the plain
data, O ∈ {I,D,M} denotes insert/delete/modify, and
v is the new value to be stored at the stated index (v is
empty for deletion). As an example, let M=‘abcde’ be a
message of length 5. The update log ‘2Mf ’ states that
the value at the second location is modified to f . Apply-
ing the series of update logs L=(2Mf,5Mk,3It,5My,4Ms,1D)
brings M to the final state M=‘ftsyk ’.

The age of an update log is the time elapsed since the
log is arrived, i.e., the log arrived first is the oldest one,
and the log arrived most recently is the youn- gest one.
It is important to store the logs ordered according
to their age, since applying the same logs in a different
order may lead to a different data.

The logs L = {ijOjvj}kj=1 are ordered according to
their age and put in a PoR instance, which generates an
encoded version of the logs C = (C1, C2, ..., Cn) ∈ Σnl
to be outsourced. The authenticity and retrievability of
the logs are handled by the PoR (which ensures that the
logs are retrievable, or the server is caught misbehav-
ing). This, in turn, ensures retrievability of the client
data even if the outsourced uncoded data is corrupted.

Once in every O(n) updates, when the Buff becomes
full, a rebuild operation applies all logs in the Buff on
the data stored at Buff∗. It empties the whole Buff,
puts the latest version of the data in a new PoR in-
stance, and stores the result at Buff∗ (whose size is
increased if needed). Note, however, that our rebuild
operation is very light compared to that of [6, 8, 22]
due to the existence of memory-checking scheme, which
can provide the client with the (authenticated) latest
version of her data, i.e., she does not need to apply
all logs on the original data one-by-one to compute the
latest version. The client only verifies the data received
from the memory checking part, and if accepted, puts
it inside a new PoR instance and outsources the result
again at Buff∗. Lastly, a rebuild requires O(n) tempo-
rary client storage, but since it is very rare, it can be
done on a computer, rather than a mobile device.

3.3 The Buff Configurations
Linear configuration. Buff can be, in the simplest

form, a one-dimensional buffer (of length n) storing the
output of the PoR instance constructed over the logs.
The client stores a counter ctr to keep the size of logs,
initialized to zero and incremented every time a new log
is created. To add a new log (or a set of new logs up
to the size of the client local storage), the client should
download all the existing outsourced logs, decode it to
retrieve the plaintext logs, append the new log, initialize
a new PoR instance to put the logs inside, and upload
the result. This requires a local memory that increases
with the log size, up to O(n). Although the audit is an
O(λ) operation, this construction suffers from the same
efficiency problem as the original static PoR: to prevent

89

the server from tampering with the recently-added parts
of the logs, a small update affects all the outsourced
logs. The amortized server computation and bandwidth
(after n updates) is: (1 + 2 + ...+ n)/n = O(n).

Figure 2: Inc.-buffers.

Incremental-buffers con-
figuration. There is a
sequence of buffers whose
sizes grow at a geometric
rate [18] and are organized
in a way that the buffer at
the ith level stores 2i ele-
ments, as shown in Figure
2. If the total size of the
(encoded) log memory is n,

then there are log(n) levels, first level storing 20 = 1
log and last level storing 2log(n)−1 = n/2 logs. In this
structure, an update operation adds a new log to the
first level, if it is empty. Otherwise, if the first empty
level is j (the client can find it using her local state, as
we will discuss later), then the logs stored at all levels
i < j are read by the client, the new log is appended,
all are put in a new PoR instance, the result is stored at
level j, and all levels i < j are emptied. This requires
a local memory equal to the sum of all levels i < j that
increase up to O(n) when the small levels are full. With
each update, a buffer is re-encoded (in a new PoR in-
stance), making it hard for the adversary to correlate
the new content to the old one, or to locate the newly-
added logs. Such an operation is called reshuffling, and
the best known overhead for an oblivious reshuffling op-
eration is O(log2(n)/ log log(n)) [18, 24].

Equibuffers configuration. Direct application of
the incremental-buffers configuration to the dynamic
PoR is not suitable as it imposes unnecessary burden.
First, although the upper-level buffers are small, the
lower-level buffers are of size O(n) that requires O(n)
temporary storage at the client to perform a basic reshuf-
fling. This amount of memory is not available in most
current hand-held devices, thus, they cannot update the
outsourced data. Second, adding some (permanent) lo-
cal storage to the client will not improve the asymp-
totic costs of this configuration as pointed to in [28]
and shown in Appendix B. Third, managing a buffer
divided into levels of different size is hard for the client.

Figure 3: Equibuffers.

As an alternative, we pro-
pose the equibuffers config-
uration in which all levels
are buffers of the same ca-
pacity. If the total size of
the Buff is n and there are
t levels, each level has size
n/t, as represented in Fig-
ure 3. An advantage of this
configuration over the pre-

vious one is that all buffers are of the same size, hence,
all operations become alike and simple, and we can fill
them up from one end. In essence, we have t linear PoR
instances, each holding up to n/t encoded log blocks.

Once some buffers are filled up, their content will
not be changed (until the next rebuild that occurs once
in O(n) updates). Hence, at most one buffer of size
O(n/t) is required to be transferred to the client, requir-
ing O(n/t) temporary local storage, and no reshuffling
is necessary during updates. With O(n/t) permanent
local storage, the client can keep and outsource O(n/t)
logs together. The redundant interactions to download
and upload half-empty buffers are eliminated, and the
server only receives and stores a full buffer each time.

In both these hierarchical configurations with t levels,
the challenge samples O(λ) blocks at each level. The
server accesses all challenged blocks (and their tags),
leading to O(λt) computation and communication.

Another important advantage of the equibuffers con-
figuration is that adding local storage to the client
does improve the update complexity. Assume
there are t levels, each of size n/t, on the server, and a
local storage of size nδ with 1 < nδ ≤ n/t on the client.
Now, the client can accumulate nδ update logs at her
local storage and outsource them at once, reducing the
amortized update cost from O(n/t) to O(n1−δ/t). Set-
ting δ = 1/2 and t =

√
n achieves a very good balance:√

n levels each of size
√
n. Each time, the whole client

memory is sent to the server, who puts it on a level with-
out further computation, and the (amortized) updates
complexity will be O(1). Moreover, there is no need to
read some logs from the server and combine with the
local logs. For an outsourced file of size 10 GB, divided
into 10 × 220 blocks each of size 1 KB, the client stores
at most

√
10× 210 blocks locally, which corresponds to

3.16 MB. This amount of local memory is available in
almost all today’s mobile phones. It is easy to transmit
this amount of data using even mobile networks.

Shi et al. [22] also suggested to keep a local storage
of size O(log(n)) to accumulate update logs and out-
source them all together to achieve O(1) amortized up-
date cost. However, the worst case computation, com-
munication, and client temporary storage all are O(n).
While, with O(

√
n) local storage, the worst case compu-

tation and communication costs of our equibuffers con-
figuration are O(

√
n), and we do not need temporary

storage at the client side. (They do not have an audit
optimization as what we propose in the next section.)

Rebuild vs. reshuffle. Reshuffling is used to obliv-
iously transfer logs from smaller buffers into the larger
ones in the incremental-buffers scheme, whereas it is
never employed in the equibuffers scheme. An imme-
diate implication of this reshuffling is that the client
needs a temporary memory to store and operate on the
whole logs being transferred. The more logs are out-
sourced, the bigger temporary memory is required. This
states that those schemes do not suit devices with lim-
ited amount of local memory. A rebuild, on the other
hand, applies to all ECAL configurations, but it is nec-
essary only once every O(n) updates.

A comparison of the ECAL configurations is given in
Table 1, where t =

√
n for equibuffer configuration.

90

Table 1: A comparison of different ECAL schemes regarding LAppend and LAudit. (‘S. Comp.’ stands for server computation,
and O(λ) multipliers omitted for simplicity.)

Configuration Client
LAppend LAudit

storage S. Comp. Bandwidth S. Comp. Bandwidth

Linear
O(1) O(n) O(n) O(1) O(1)

O(nδ) O(n1−δ) O(n1−δ) O(1) O(1)

Incremental
O(1) O(log(n)) O(log(n)) O(log(n)) O(log(n))

O(nδ) O(log(n)) O(log(n)) O(log(n)) O(log(n))

Equibuffers

O(1) O(
√
n) O(

√
n) O(

√
n) O(

√
n)

O(nδ) O(n1/2−δ) O(n1/2−δ) O(
√
n) O(

√
n)

O(
√
n) O(1) O(1) O(

√
n) O(

√
n)

3.4 ECAL Protocols
In both incremental- and equibuffers configurations,

the client’s local state contains the keys of the PoR in-
stances in all levels and a counter ctr, which is incre-
mented with each update. Using ctr, the client can
find the buffer that the current update log should be
directed to. Each level is treated as a separate PoR in-
stance, with a different pair of keys stored at the client,
requiring a separate proof from the server. The general
ECAL construction is as follows:

• LInit(1λ, 1w, n,M): The client starts this protocol
to initialize the buffers on the server, given as in-
put the security parameter λ, the block size w, the
memory size n, and the initial data M. The client:

– Runs (pk∗, sk∗)← P.Kg(1λ) and shares pk∗ with
the server.

– Puts the initial data M in a PoR instance: C∗ =
P.St(sk∗,M), and outsources C∗ to the server.

– Sets ctr = 0.

The server keeps the PoR’s public key pk∗, and stores
C∗ in Buff∗.
• LAppend(l): appends a new update log l. The client:

– Increases ctr by one, i.e., ctr++.

– Adds l to her local storage, locbuff.

– If locbuff is full:

∗ Computes the buffer number to put the new
log into. This can be done for all constructions
above. As an example, for equibuffers case with
each level containing buffsize many logs, she
computes j = dctr/buffsizee. The current
logs will be stored at buffj .

∗ Reads contents of buffj as Cj from the server,
with its authenticity proof. (For incremental-
buffers, reads all buffers up to j.)

∗ If the authenticity verification succeeds, decodes
Cj to obtain Lj .

∗ Adds the new logs according to their age: Ljnew =
Lj ||locbuff.

∗ Runs (pkj , skj)← P.Kg(1λ), and shares pkj with
the server.

∗ Re-encodes the logs via PoR: Cjnew = P.St(skj , L
j
new).

∗ Outsources the encoded logs Cjnew (to buffj),
and empties locbuff.

• LAudit(): The client specifies a challenge vector and
sends it to the server to check whether he keeps stor-
ing the logs correctly (it can also be used to read a
log, e.g., the ith log, by putting only i in the chal-
lenge vector). The important point is that the chal-
lenge should sample all logs to give the retrievability
guarantee. The client, after verifying the server’s an-
swer, emits an acceptance or a rejection notification.

– The client picks λ random locations from each
buffer buff1, ..., bufft and Buff∗, puts all in the
challenge vector ch, and sends it to the server.1

– The server runs (σi, µi) ← P.P(pki, buffi, chi)
for each buffer buffi ∈ {buff1, ..., bufft, Buff∗}
to generate a proof of possession, where t is the
number of levels of Buff and chi is a subset of ch
containing indices in buffi. He sends all proofs
{σi, µi}ti=1||{σ∗, µ∗} to the client.

– The client runs P.V(pki, ski, chi, σi, µi) on all proofs
received, and emits ‘accept’ if all verified, and
‘reject’ otherwise.

3.5 Achieving Constant Audit Bandwidth
In both the incremental- and equibuffers configura-

tions, each level uses a different PoR key. Therefore,
the proofs of different levels cannot be aggregated fur-
ther, leading to increased communication. We give an
optimization to achieve constant audit bandwidth that
is applicable only on PDP-based schemes, e.g., com-
pact PoR [21]. The idea is to change the PDP tag
generation algorithm in a way that different levels can
use the same PoR instance, without leading to replay
attacks. Indeed, we can aggregate all challenged tags
(of all buffers) into one, and reduce communication to
O(λ). This immediately brings another advantage: the
client needs to store only one pair of keys since there is
only one PoR instance.

In PDP [1], a random number v is generated and con-
catenated with the block number i to obtain Wi = v||i,

1The client may send a PRF key instead, to simplify
communication (see e.g., [1]).

91

which is used in tag generation to bind the generated
tags to a specific PDP instance (identified by v) and
the corresponding blocks (identified by i). The tags are
computed as ti = (h(Wi)g

mi)d mod N , for each block
mi, where N = pq is an RSA modulus with p and q as
two safe primes, g is a generator of quadratic residues
QRN , and d is the secret key.

We use a different v for each buffer that is the output
of a pseudo-random function F, given the last ctr value
as input: vbuffj = FK(ctr). This binds each block to
the last time the respective buffer was updated. When
some new logs of size s are being appended to a half-
empty buffer buffj , the client increases ctr to ctr+ s,
reads and decodes contents of buffj , appends new logs,
computes the new v value as vbuffj = FK(ctr+s), gen-
erates the respective tags (for the whole buffj), and
outsources the result. This process goes on until buffj
is filled up, after which, its content becomes perma-
nent and its tags will not be changed in the equibuffers
case (until the next rebuild emptying all buffers). The
process will be repeated with the next empty buffer
buffj+1, afterwards.

The proof generation by the server remains the same.
Our modification only affects the verification: the client
should use the correct v values for each buffer. This,
however, is not complicated since for each full buffer
buffj , Σji=0|buffj | will be used as input to the PRF.
For the current working buffer, the largest value ≤ ctr
that is a multiple of the client local storage size is used.
For incremental-buffers configuration, v can be calcu-
lated based on the counter.

The prime result of this modification is that, since all
levels use the same PoR key, the server can aggregate all
challenged tags into one and send it to the client. This
reduces the proof size (and the client storage for keys)
from O(λt) to O(λ) in audits, where t is the number of
levels of Buff. Note that the modified PoR is not a fully
dynamic scheme. It only supports append operation as
the original PDP scheme [1]. Moreover, our modifica-
tion does not affect its security and extractability. We
use pseudorandom v values instead of random values.
The same extractor works here, and the same security
proof is applicable.

4. DYNAMIC PROOF OF RETRIEVABIL-
ITY

Since ECAL stores the client data and guarantees its
retrievability, it seems the ECAL itself is a dynamic PoR
scheme. However, due to the nature and application of
the ECAL, reading a data block requires reading, de-
coding, and reconstructing all logs, necessitating O(n)
cost. Therefore, read is not an efficient operation in
ECAL, and it should not normally be fulfilled through
the ECAL. Retrieving through the ECAL should be the
last resort when other options fail. This is the reason
why ECAL is not an efficient DPoR scheme in its own.

Since access privacy is not a requirement in PoR def-

inition [16], we can store the client data in a dynamic
memory-checking scheme, e.g., DPDP [12], preserving
its authenticity. Read operations will be handled through
this memory-checking part. But, update operations will
affect both the memory-checking and ECAL parts. This
solves the read efficiency problem.

Given a static PoR and a dynamic memory-checking
scheme, we can construct an efficient dynamic PoR scheme.
Moreover, given an erasure-correcting code and a static
memory-checking scheme, we can construct a static PoR
[21]. Hence, a dynamic PoR scheme can be constructed
given black-box access to a dynamic memory-checking
scheme, an erasure-correcting code scheme, and a static
memory-checking scheme. Note that except our audit
bandwidth optimization that is not black-box, all other
solutions presented work in a black-box manner.

Definition 4.1 (Dynamic PoR). A dynamic PoR
scheme includes the following protocols (mostly from
[6]) run between a stateful client and a stateful server.
The client, using these interactive protocols, can out-
source and later update her data at an untrusted server,
while retrievability of her data is guaranteed:

• PInit(1λ, 1w, n,M): given the alphabet Σ = {0, 1}w
and the security parameter λ, the client uses this
protocol to initialize a memory of size n on the server,
outsourcing there the initial data M .

• PUpdate(i, OP, v): the client performs the operation
OP ∈ {I,D,M} on the ith location of the memory
(on the server) with input value v (if required).

• v ← PRead(i): is used to read the value stored at the
ith location of the memory managed by the server.
The client specifies the location i as input, and ob-
tains some value v and a proof π proving authentic-
ity of v from the server. If the proof is accepted, it
outputs v, and ⊥ otherwise.

• accept/reject ← PAudit(): The client starts this
protocol to check if the server keeps her data cor-
rectly. She emits an acceptance or a rejection signal.

Dynamic PoR security definitions. Since ECAL
is a (inefficient) DPoR scheme, all its security defini-
tions with proper protocol names are applicable here. In

both games, the server S̃ asks the challenger to start a
protocol ∈ {PRead, PUpdate, PAudit} by providing the
required information.

4.1 DPoR Construction
Let n, k ∈ Z+ (k<n), and Σl={0, 1}w and Σm={0, 1}w′

be two finite alphabets. The client is going to outsource
a data M=(m1, ...,mk) ∈ Σkm. She stores M inside a
DPDP construction D=(KeyGen,PrepareUpdate,Perform-
Update,VerifyUpdate,Challenge,Prove,Verify), and
initializes an ECAL instance E=(LInit,LAppend,LAudit)
to store the encoded logs. On each update, she updates

92

both D and E, which support read and audit, respec-
tively. Our dynamic PoR construction is as follows:
PInit(1λ, 1w, n,M):

• The client runs (pk, sk)← D.KeyGen(1λ) and shares
pk with the server.

• The client runs (e(M), e(‘full rewrite’), e(st′c))←
D.PrepareUpdate(sk, pk,M,‘full rewrite’, stc).

• The server runs (M1, sts, st
′
c, Pst′c)←D.PerformUpdate

(pk,e(M), e(‘full rewrite’), e(st′c)), where M1 is
the first version of the client data, and st′c and Pst′c
are the client’s metadata and its proof, respectively,
computed by the server, to be sent to the client.

• The client executes D.VerifyUpdate(sk, pk,M, ‘full
rewrite’,stc, st

′
c, Pst′c), and outputs the correspond-

ing acceptance or rejection notification.

• The client also stores the initial data using the ECAL:
E.LInit(1λ, 1w, n,M).

PUpdate(i, OP, v):

• Client runs (e(v), e(OP, i), e(st′c)) ← D.PrepareUp-
date(sk, pk, v, (OP, i), stc).

• The server runs (M j , sts, st
′
c, Pst′c) ← D.Perform-

Update(pk, e(M j−1), e(OP, i), e(st′c)), whereM j−1 is
the current version of the data on the server (to be
updated into M j). The server returns st′c and Pst′c .

• The client executes D.VerifyUpdate(sk, pk, v, (OP, i),
stc, st

′
c, Pst′c), and outputs the corresponding accep-

tance or rejection signal.

• The client prepares the corresponding log, l =‘iOPv’,
and runs E.LAppend(l).

PRead(i):

• The client creates a DPDP challenge containing the
block index i only, and sends it to the server. (Chal-
lenging only one block is a ‘read’.)

• The server executes P ← D.Prove(pk,M j , sts, i) to
generate and return P .

• The client runs D.Verify(sk, pk, stc, i, P) to verify
the proof.

• If it is accepted, outputs the value read.

• Otherwise, she tries to read through E. She needs to
read the whole logs.

• If reading from E was successful, she outputs the
value read.

• Otherwise, misbehavior of the server is detected.
She output ⊥, and goes to the arbitrator, e.g., [17].

PAudit:

• The client starts E.LAudit() and outputs the result.

4.2 Dynamic PoR Security Proof

Theorem 4.1. If D = (KeyGen, PrepareUpdate, Per-
formUpdate, VerifyUpdate, Challenge, Prove, Verify)
is a secure DPDP scheme, and E = (LInit, LAppend,
LAudit) is a secure ECAL scheme, DPoR = (PInit,
PRead, PUpdate, PAudit) is a secure DPoR scheme acc-
ording to (modified versions of) definitions 3.2 and 3.3.

Proof. Correctness of DPoR follows from the cor-
rectness of DPDP and ECAL. Since DPoR has nothing
to do apart from DPDP and ECAL, if both of them op-
erate correctly, then any PRead(i) will return the most
recent version stored at the ith location through DPDP,
and all PAudit operations will lead to acceptance.

Authenticity is provided by the underlying DPDP
and ECAL schemes. Whenever a data is read, the un-
derlying DPDP scheme sends a proof of integrity, assur-
ing authenticity. When that fails, the logs will be read
through ECAL, which also provides authenticity.

In particular, if a PPT adversary A wins the DPoR
authenticity game with non-negligible probability, we
can use it in a straightforward reduction to construct
a PPT algorithm B who breaks security of either the
ECAL scheme or the DPDP scheme (or both of them)
with non-negligible probability. Since both the ECAL
and DPDP schemes are secure, the adversary has negli-
gible probability of winning either of them. Therefore,
our DPOR is authentic supposed that the underlying
ECAL and DPDP schemes are authentic.

Retrievability immediately follows from retrievabil-
ity of the ECAL. Since ECAL is secure, it guarantees
retrievability of the logs that can be used to reconstruct
and retrieve the uncoded data. We bypass the proof de-
tails as it is straightforward to reduce the retrievability
of our dynamic PoR scheme to that of the underlying
ECAL.

4.3 Comparison to Previous Work
Investigating the equibuffer configuration of ECAL

in detail and the complexities in Table 1 reveals that
the client storage (SC), and the update and audit costs
of the server (CU and CA) are related together via the
following formula (ignoring factors depending on the se-
curity parameter): SC × CU × CA = O(n).

This formula describes a nice trade-off between the
client storage, and the update and audit costs, that can
be used to design dynamic PoR schemes with different
requirements. A similar statement is given by Cash et
al. [6] for the linear configuration (in the Appendix A
of their paper): for any δ > 0, using client storage of
size nδ the complexity of read, update, and audit will
be O(1), O(nδ), and O(n1−δ), respectively.

Our scheme covers the schemes in [8, 22]. Using the
incremental buffers together with MAC instead of PDP
tags reduces our scheme to [22]. If, in addition, the
incremental-buffers together with MAC is used to store

93

Table 2: A comparison of dynamic PoR schemes (‘S. comp.’ stands for ‘Server computation’, and ‘BW’ is used for ‘bandwidth’.
All schemes require a temporary memory of size O(λn) for rebuild.)

Scheme Client
Read Update Audit

Update temp.
Storage S. comp. BW S. comp. BW S. comp. BW memory

Cash et al. [6] O(λ) O(λ log2 n) O(λ log2 n) O(λ2 log2 n) O(λ2 log2 n) O(λ2 log2 n) O(λ2 log2 n) O(λn)

LULDC [8] O(λ) O(λ log2 n) O(λ log2 n) O(λ logn) O(λ logn) O(λ logn) O(λ logn) O(λn)

Shi et al. [22] O(λ) O(λ logn) O(λ logn) O(λ logn) O(λ logn) O(λ logn) O(λ2 logn) O(λn)

Our scheme
O(λ) O(λ logn) O(λ logn) O(λ

√
n) O(λ

√
n) O(λ

√
n) O(λ) O(λ

√
n)

(Equibuffer) O(λ
√
n) O(λ logn) O(λ logn) O(λ) O(λ) O(λ

√
n) O(λ) O(λ)

the uncoded data as a memory-checking scheme instead
of DPDP, the resulting scheme will be [8].

Our schemes pose important advantages compared to
the previous work [6, 8, 22]. First, the bandwidth opti-
mization makes the audit and (amortized) update band-
width O(λ), which are optimal. Second, our equibuffer
configuration with reasonable amount of permanent client
storage, i.e., O(

√
n) that is ∼ 3 MB for an outsourced

data of size 10 GB, makes possible using smart phones
(and other hand-held electronic devices) for updating
the outsourced data securely.

Table 2 represents a comparison among the dynamic
PoR schemes. The server storage is O(n) in all schemes.
The operation complexities of our schemes are com-
puted using the version with the equibuffer optimiza-
tion and the audit bandwidth optimization applied on.
These two optimizations can be applied independently.
The audit bandwidth optimization, for instance, can be
applied on top of previous work [22, 8] to achieve opti-
mal audit bandwidth. The communication cost in our
scheme, in different settings, is reduced to O(λ). There-
fore, we manage to obtain the most general and ef-
ficient DPoR construction known.

Acknowledgement
We would like to acknowledge the support of TÜBİTAK,
the Scientific and Technological Research Council of
Turkey, under project numbers 114E487 and 112E115,
and European Union COST Actions IC1206 and IC1306.

5. REFERENCES
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. Peterson, and D. Song. Provable
data possession at untrusted stores. In CCS’07.
ACM, 2007.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and
G. Tsudik. Scalable and efficient provable data
possession. In SecureComm, page 9. ACM, 2008.

[3] A. Barsoum and A. Hasan. Enabling dynamic
data and indirect mutual trust for cloud
computing storage systems. IEEE TPDS’13,
24(12):2375–2385, 2013.

[4] K. Bowers, A. Juels, and A. Oprea. Hail: A
high-availability and integrity layer for cloud
storage. In CCS’09, pages 187–198. ACM, 2009.

[5] K. D. Bowers, A. Juels, and A. Oprea. Proofs of
retrievability: Theory and implementation. In
CCSW, pages 43–54. ACM, 2009.

[6] D. Cash, A. Küpçü, and D. Wichs. Dynamic
proofs of retrievability via oblivious ram. In
EUROCRYPT’13, pages 279–295. Springer, 2013.

[7] D. Cash, A. Küpçü, and D. Wichs. Dynamic
proofs of retrievability via oblivious ram. Journal
of Cryptology, 2015.

[8] N. Chandran, B. Kanukurthi, and R. Ostrovsky.
Locally updatable and locally decodable codes. In
TCC, 2014.

[9] R. Curtmola, O. Khan, and R. Burns. Robust
remote data checking. In 4th ACM intl. workshop
on Storage security and survivability, pages 63–68.
ACM, 2008.

[10] R. Curtmola, O. Khan, R. Burns, and
G. Ateniese. Mr-pdp: Multiple-replica provable
data possession. In ICDCS’08, pages 411–420.
IEEE, 2008.

[11] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of
retrievability via hardness amplification. In TCC.
Springer, 2009.

[12] C. Erway, A. Küpçü, C. Papamanthou, and
R. Tamassia. Dynamic provable data possession.
In CCS’09, pages 213–222. ACM, 2009.

[13] E. Esiner, A. Küpçü, and Ö. Özkasap. Analysis
and optimization on flexdpdp: A practical
solution for dynamic provable data possession. In
ICC, 2014.

[14] M. Etemad and A. Küpçü. Transparent,
distributed, and replicated dynamic provable data
possession. In ACNS, 2013.

[15] O. Goldreich and R. Ostrovsky. Software
protection and simulation on oblivious rams.
Journal of the ACM (JACM), 43(3):431–473,
1996.

[16] A. Juels and B. S. Kaliski, Jr. Pors: proofs of
retrievability for large files. In CCS’07, pages
584–597, New York, NY, USA, 2007. ACM.

[17] A. Küpçü. Official arbitration with secure cloud
storage application. The Computer Journal, 2015.

[18] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(in) security of hash-based oblivious ram and a
new balancing scheme. In ACM SODA. SIAM,

94

2012.
[19] Z. Mo, Y. Zhou, and S. Chen. A dynamic proof of

retrievability (por) scheme with o(logn)
complexity. In IEEE ICC, pages 912–916. IEEE,
2012.

[20] H. Shacham and B. Waters. Compact proofs of
retrievability. In Advances in
Cryptology-ASIACRYPT 2008, pages 90–107.
Springer, 2008.

[21] H. Shacham and B. Waters. Compact proofs of
retrievability. Journal of cryptology, 26(3), 2013.

[22] E. Shi, E. Stefanov, and C. Papamanthou.
Practical dynamic proofs of retrievability. In ACM
CCS, pages 325–336. ACM, 2013.

[23] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea.
Iris: A scalable cloud file system with efficient
integrity checks. In ACSAC, pages 229–238.
ACM, 2012.

[24] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher,
L. Ren, X. Yu, and S. Devadas. Path oram: An
extremely simple oblivious ram protocol. In ACM
CCS, pages 299–310. ACM, 2013.

[25] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou.
Toward secure and dependable storage services in
cloud computing. IEEE Transactions on Services
Computing, 5(2):220–232, 2012.

[26] C. Wang, Q. Wang, K. Ren, and W. Lou.
Privacy-preserving public auditing for data
storage security in cloud computing. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9.
IEEE, 2010.

[27] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou.
Enabling public verifiability and data dynamics
for storage security in cloud computing. In
ESORICS 2009, pages 355–370. Springer, 2009.

[28] P. Williams and R. Sion. Usable pir. In NDSS,
2008.

[29] K. Zeng. Publicly verifiable remote data integrity.
In ICICS’08, pages 419–434. Springer-Verlag,
2008.

[30] Q. Zheng and S. Xu. Fair and dynamic proofs of
retrievability. In Proceedings of the first ACM
conference on Data and application security and
privacy, pages 237–248. ACM, 2011.

APPENDIX
A. DPDP SCHEME DEFINITION

The DPDP scheme is defined as follows [12]:

(sk, pk) ← KeyGen(1λ): run by the client to generate
the secret and public key pair (sk, pk), given the
security parameter λ as input. The client shares
the public key with the server.

(e(F), e(info), e(M))← PrepareUpdate(sk, pk, F, info,
Mc): run by the client to prepare the file to be
stored on the server. It takes as input the secret

and public keys, the file F , the definition info of
the update, and the previous metadata Mc, and
generates an encoded version of e(F), the informa-
tion e(info) about the update, and the new meta-
data e(M).

(Fi,Mi,M
′
c, PM ′

c
) ← PerformUpdate(pk, Fi−1,Mi−1,

e(F), e(info), e(M)): run by the server upon re-
ceipt of an update request. The public key pk,
the previous version of the file Fi−1, the metadata
Mi−1, and the outputs of PrepareUpdate are given
as input. It generates the new version of the file Fi,
the metadata Mi, and the client metadata and its
proof (M ′c and P ′Mc

).

accept/reject ← VerifyUpdate(sk, pk, F, info,Mc,
M ′c, PM ′

c
) run by the client to verify the server’s

response with inputs of PrepareUpdate algorithm,
M ′c and P ′Mc

. It outputs an acceptance or a rejec-
tion signal.

c← Challenge(sk, pk,Mc): given the secret and pub-
lic keys, and the latest client metadata Mc as input,
it generates a challenge c.

P ← Prove(pk, Fi,Mi, c): given the public key, the
latest version of the file Fi and metadata Mi, and
the challenge c, the server generates a proof P to
be sent to the client.

accept/reject ← Verify(sk, pk,Mc, c, P): run by
the client to verify the proof P , given the secret
and public keys, the client metadata Mc, and the
challenge c as input. It outputs an accept or a
reject signal.

B. THE IMPACT OF CLIENT STORAGE
We show that in the incremental-buffers configura-

tion, adding local storage to the client will not change
the update complexity asymptotically. Assume the client
has a local storage of size nδ she uses to keep update logs
locally, and send them all at once to the server (when
it becomes full). We can imagine the server’s memory
layout as in Figure 4.

Figure 4: Server’s memory
layout when the client has
nδ local storage.

This represents a simi-
lar layout to the Figure 2,
but now each update op-
eration carries a data of
length nδ that will be put
in the first level buffer.
The next update finds the
first level full, merges its
data with those in the
first level and reshuffles
them, and finally stores

the result in the second level buffer (and empties the
first level). This is repeated in a similar way as in the
original configuration until the whole buffer becomes
full. Stated differently, all operations are the same as
the original incremental-buffers configuration, the only
difference is the update data size.

95

There are (1− δ) log(n) buffers, first buffer of size nδ

and the last one of size O(n). The first buffer will be
written n1−δ times, the second one n1−δ/2 times, and
the last buffer one time. Now, we compute the number
of update operation executions to update a total of n
logs into the server:
n1−δ ∗nδ+(n1−δ/2)∗2nδ+...+1∗n = n+n+...+n =

((1− δ) log(n))n.
Hence, the amortized cost of a single update is (1 −

δ) log(n) = O(log(n)), which is asymptotically same as
the case where the client had constant storage.

C. ECAL SECURITY PROOF

Theorem C.1. If CP = (Kg, St, P, V) is a secure PoR
scheme, E = (LInit, LAppend, LAudit) is a secure ECAL
scheme according to definitions 3.2 and 3.3.

Correctness immediately follows from that of the
underlying PoR scheme.

Authenticity is provided by the underlying PoR
scheme. The linear buffer case is obvious. The incremental-
buffers case was shown by Shi et al. [22]. We treat the
equibuffers construction below, and then focus on our
communication-efficient optimized version.

For the equibuffers case, assume that there are t lev-
els, and each level is a distinct PoR instance. If a PPT
adversary A wins the ECAL authenticity game with
non-negligible probability, we can use it to construct a
PPT algorithm B who breaks the security of (at least)
one of the PoR instances used in one of the levels, with
non-negligible probability. B acts as the challenger in
the ECAL game with the adversary A, and simultane-
ously, plays role of the server in PoR game played with
the PoR challenger C. He receives the public key of a
PoR scheme from C, and produces t − 1 other pairs of
PoR public and private keys himself. Then, he guesses
some i and puts the received key in ith position, and
sends the t public keys to A. From here on, B just
keeps forwarding messages from A on the level i to C,
and vice versa. For the other levels, he himself performs
the operations.

When A wins the ECAL security game, if the guess
of i was correct, B would also win the PoR security
game. Thus, if A passes the ECAL verification with
non-negligible probability p, then B passes the PoR ver-
ification with probability at least p/t, where t is the
number of levels, which is polynomial in the security
parameter. Since we employ secure PoRs, p/t must be
negligible, which implies that p is negligible, hence, A
has negligible probability of winning the ECAL game.
Therefore, our ECAL scheme is secure if the underlying
PoRs are.

When the communication-efficient configuration is used,
the reduction is even simpler (for both incremental- and
equi-buffers). All levels use the same key. The only dif-
ference is that, when C sends an append operation to B,
then B internally calculates the associated level i and

sends the related append operation to A. Further, ob-
serve that the only difference of our optimization from
the original PoR is the tag calculation. Since we employ
the same PRF idea, with just a slightly different input,
this does not affect the security. Therefore, if A wins
with probability p, B wins with the same probability.

Retrievability. We give a proof sketch of retriev-
ability without going into details, since the full proof is
similar to the already-existing proofs [21, 16, 1, 6].

We reduce extractability of the incremental- and equi-
buffers constructions to that of the PoR (the linear case
is exactly a PoR). There are multiple PoR instances in
incremental- and equi-buffers constructions. Due to the
security of PoR, if the server manipulates more than
d− 1 blocks in some level, he will be caught with high
probability (see [21]). Hence, if he can pass the ver-
ification, each level is extractable, which means that
the portion of logs stored in that PoR instance is re-
trievable with overwhelming probability. Putting to-
gether all these PoR instances guarantees retrievabil-
ity of the whole logs stored in these constructions with
overwhelming probability.

For the communication-efficient configuration, the PoR
extractability proof is again applicable [21], since chang-
ing the PRF input in the tag does not affect extractabil-
ity (which only depends on obtaining linearly-independent
combinations of data items). The original reduction to
the RSA assumption and PRF indistinguishability also
remains unaffected [1]. There is only one PoR in use
whose extractor works for this ECAL configuration as
well.

96

	Introduction
	Related Work
	Preliminaries

	Overview
	Erasure-Coded Authenticated Log
	ECAL Security Definitions
	Generic ECAL Construction
	The Buff Configurations
	ECAL Protocols
	Achieving Constant Audit Bandwidth

	Dynamic Proof of Retrievability
	DPoR Construction
	Dynamic PoR Security Proof
	Comparison to Previous Work

	References
	DPDP Scheme Definition
	The Impact of Client Storage
	ECAL Security Proof

