
Optimistic Fair Exchange with Multiple Arbiters

Alptekin Küpçü and Anna Lysyanskaya
Brown University, Providence, RI, USA

{kupcu,anna}@cs.brown.edu

Abstract

Fair exchange is one of the most fundamental problems in secure distributed computation.
Alice has something that Bob wants, and Bob has something that Alice wants. A fair exchange
protocol would guarantee that, even if one of them maliciously deviates from the protocol,
either both of them get the desired content, or neither of them do. It is known that no two-
party protocol can guarantee fairness in general; therefore the presence of a trusted arbiter is
necessary. In optimistic fair exchange, the arbiter only gets involved in case of faults, but needs
to be trusted. To reduce the trust put in the arbiter, it is natural to consider employing multiple
arbiters.

Expensive techniques like byzantine agreement or secure multi-party computation with Ω(n2)
communication can be applied to distribute arbiters in a non-autonomous way. Yet we are
interested in efficient protocols that can be achieved by keeping the arbiters autonomous (non-
communicating), especially for p2p settings in which the arbiters do not even know each other.
Avoine and Vaudenay [6] employ multiple autonomous arbiters in their optimistic fair exchange
protocol which uses global timeout mechanisms; all arbiters have access to -loosely- synchro-
nized clocks. They left two open questions regarding the use of distributed autonomous arbiters:
(1) Can an optimistic fair exchange protocol without timeouts provide fairness (since it is hard
to achieve synchronization in a p2p setting) when employing multiple autonomous arbiters?
(2) Can any other optimistic fair exchange protocol with timeouts achieve better bounds on
the number of honest arbiters required? In this paper, we answer both questions negatively.
To answer these questions, we define a general class of optimistic fair exchange protocols with
multiple arbiters, called “distributed arbiter fair exchange” (DAFE) protocols. Informally, in a
DAFE protocol, if a participant fails to send a correctly formed message, the other party must
contact some subset of the arbiters and get correctly formed responses from them. The arbiters
do not communicate with each other, but only to Alice and Bob. We prove that no DAFE
protocol can meaningfully exist.

Keywords: optimistic fair exchange, distributed arbiters, trusted third party.

1 Introduction

Optimistic fair exchange is a very useful primitive in distributed system design with many applica-
tions including contract signing, electronic commerce, or even peer-to-peer file sharing [2, 3, 4, 5, 7,
8, 15, 18, 19, 20]. In a fair exchange protocol, Alice and Bob want to exchange some items, and they
want to do so fairly. Fairness intuitively refers to Alice getting Bob’s item and Bob getting Alice’s
item at the end of the protocol, or neither of them getting anything, even if one of them maliciously
deviates from the protocol. For technical definitions of optimistic fair exchange protocols, we refer
the reader to [18].

1

The final authenticated publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-15497-3_30

It has been shown that no general fair exchange protocol can provide complete fairness without
a trusted entity [21], called the arbiter. In an optimistic fair exchange protocol, the arbiter is not
involved unless there is a dispute between the participants. But having a single trusted entity is
one of the biggest problems that make the use of such protocols hard in practice. Therefore, the
use of multiple arbiters is generally motivated by reducing the trust put on the arbiter [6, 18].1

A very natural question is how to achieve fairness in the absence of a single trusted arbiter; for
example, what if we have n arbiters only a fraction of whom we want to put our trust in? It is clear
that this can be achieved using byzantine agreement or secure multi-party computation techniques
[17, 9, 10, 14] with Ω(n2) communication, but can we do better than that? In particular, can we do
anything in a setting where the arbiters need not communicate with each other to resolve disputes?
This issue is highly relevant especially for peer-to-peer settings in which the arbiters do not even
know each other, and may not have enough resources for complicated schemes. Furthermore, if the
scheme gets more costly, it will be hard to incentivize multiple arbiters to arbitrate, since they will
get overloaded.

Avoine and Vaudenay (AV) [6] address this problem in their paper by using verifiable secret
sharing techniques to employ multiple arbiters in their fair exchange protocol for a p2p system. In
their setting, two peers are performing a fair exchange, and a number of other peers constitute the
arbiters. They provide bounds on the number of arbiters that should be honest for their protocol to
be fair (see Section 7). A crucial point is that the protocol uses global timeout mechanisms, which
assumes all arbiters have access to -loosely- synchronized clocks, and the arbiters are autonomous
(they do not communicate with each other). They leave two important issues as open questions:
(1) Can an optimistic fair exchange protocol without timeouts provide fairness (since it is hard to
achieve synchronization in a p2p setting) when employing multiple autonomous arbiters? (2) Can
any other optimistic fair exchange protocol with timeouts achieve better bounds on the number of
arbiters that need to be honest?

Unfortunately, in this paper, we answer both of these questions negatively. Inspired by state-of-
the-art optimistic fair exchange protocols with a single arbiter, we define a general class of optimistic
fair exchange protocols with multiple arbiters, called “distributed arbiter fair exchange” (DAFE)
protocols. Informally, in a DAFE protocol, if one of the participants fails to send a correctly
formed message, the other participant must contact some subset of the arbiters and get correctly
formed responses from them in order to make the exchange fair.2 Two main properties of a DAFE
protocol are its abort/resolve semantics and the autonomy of multiple arbiters used, as discussed
in Section 2. In a DAFE protocol, the arbiters are autonomous; they do not talk to each other, but
talk only to Alice and Bob. A third property is the state machine semantics of the participants. We
show that this class of protocols capture currently known state-of-the-art optimistic fair exchange
protocols extended to use multiple distributed arbiters in a very intuitive manner, as shown in
Section 2.1. Under this framework, in Section 4 we analyze scenarios that can occur during the
execution of instances of optimistic fair exchange protocols, and prove some predicates every such
protocol must satisfy to be able to provide semantic fairness, which is a property that needs to be
satisfied by all optimistic fair exchange protocols.

In Section 5, we prove that no DAFE protocol can provide fairness meaningfully3, answering

1It is possible to have multiple arbiters deployed for reducing the load, but if only one of them is employed per
exchange, we do not consider that protocol as having distributed arbiters.

2Of course, if no message is sent yet, there is no need to contact arbiters, which is not an interesting case to
analyze anyway.

3We prove that multiple arbiters are no better (or actually worse) than a single arbiter in terms of trust in the

2

the first open question negatively. In Section 6, we prove impossibility of DAFE protocols using
threshold-based mechanisms (any k arbiters are enough for resolution) even when the autonomous
arbiters assumption is relaxed. For protocols using general set-based mechanisms (any k arbiters
will not be enough for resolution, specific sets of arbiters need to be contacted), we cannot prove im-
possibility in this relaxed setting, but we conjecture that such protocols are not possible. However,
our impossibility results can be overcome in the timeout model (where all arbiters have access to
loosely synchronized clocks) and also in case the arbiters can communicate. We use our framework
to analyze the existing AV protocol [6] in this timeout model in Section 7, showing how easy it is to
apply our framework. We prove that the bounds on the required number of honest arbiters proven
earlier for that protocol are optimal, and hence answer the second open question also negatively.

These results mean that many optimistic fair exchange protocols that want to efficiently dis-
tribute their arbiters may need to employ synchronized clocks. And even in this case, they cannot
hope to require fewer honest arbiters than the Avoine and Vaudenay protocol [6]. If they do not
want to employ synchronized clocks, then they may need to employ costly solutions like secure
multi-party computation or Byzantine agreement.

2 Definition of a DAFE protocol

Figure 1: Semantic view of
the state machines of the
participants.

In this section, we define a general optimistic fair exchange model that
fits currently known state-of-the-art optimistic fair exchange schemes
that uses an arbiter, and has semantics for aborting and resolving
that we define below.

All the participants (Alice, Bob and the arbiters) are interactive
Turing Machines (ITMs)4. Those ITMs have the following 4 semantic
states: Working , Aborted , Resolved , Dispute (see Figure 1). These
semantic states can correspond to multiple states in the actual ITM
definitions of the participants, but these abstractions will be used to
prove our results.

The ITM of each participant starts in the Working state. Seman-
tically, Working state denotes any state that the actual ITM of a participant is in when the protocol
is still taking place. When a participant does not receive the expected correctly formed message
from the other participant, he can possibly abort or decide to contact the arbiters for resolving or
aborting with them, in which case the ITM of that participant enters its Dispute state. If every-
thing goes well in the protocol execution (all messages received from the other party are correctly
formed), then the ITM of a participant transitions to the Resolved state directly from the Working
state. Otherwise, if the arbiters needed to be contacted, the ITM first visits the Dispute state, and
then transitions to either Resolved or Aborted state. Arbiters’ Dispute state is dummy, and hence
not needed in our analysis. Furthermore, when in Section 6 we relax one of our assumptions, even
Alice and Bob will not have this Dispute state.

When the protocol ends, Alice and Bob are allowed to end only in Aborted or Resolved states. If
Alice or Bob ends at its Resolved state, then, by definition, (s)he must have obtained the exchange
item from the other party. When the protocol ends, if the ITM of a participant is not in its Resolved
state, it is considered to be in its Aborted state.

DAFE framework.
4The ITMs have access to –possibly synchronized– clocks for timeout mechanisms.

3

Using these semantic definitions, even an adversarial ITM can be considered to have those 4
states (since it either obtains the other party’s item and hence ends at its Resolved state, or not
therefore ending at its Aborted state). The adversarial ITM does not necessarily have a Dispute
state, but this will not affect any results presented in this paper. One can think that the moment
the honest party’s ITM enters its Dispute state, the adversarial ITM also enters its Dispute state.

We will talk about only complete DAFE protocols (for a definition of optimistic fair exchange
protocols, see Appendix A): when both participants are honest, they end at their Resolved states.
Since our goal here is to analyze fairness of such protocols, the only interesting case is when we
have one honest party denoted H and one malicious party denoted M . We will not consider cases
where both parties are malicious since there is no honest party to protect.

Definition 1 (End of the Protocol). We say that the protocol has ended if (1) the honest party
ended up being in her either Resolved or Aborted state, and (2) the adversary produced its final
output at its either Resolved or Aborted state after running at most a polynomial number of steps
(polynomial in some security parameter).

Now that we defined our participants carefully, we can state our assumptions on them and
define DAFE protocols.

Distributed Arbiter Fair Exchange (DAFE) protocols: DAFE protocols are opti-
mistic fair exchange protocols that can be characterized with the following:

• Exclusive states assumption

• Connection between arbiters’ state and Alice’s and Bob’s

• Autonomous arbiters assumption

Exclusive states assumption: This assumption states that the Resolved and Aborted states
are mutually exclusive. For an arbiter, those states informally mean whether or not the arbiter
helped one of the parties to resolve or abort. We assume that there is no combination of state
transitions that can take an honest arbiter from the Aborted state to the Resolved state, or vice
versa. In most existing protocols, this corresponds to the fact that the arbiter will not abort with
a participant first and then decide to resolve with him or the other participant, or vice versa.
An honest arbiter can keep executing abort (or resolve) protocols with other participants in the
exchange while he is in the Aborted (or Resolved , respectively) state, but can not switch between
states for different participants.

Definition 2 (Aborting and Resolving with an Arbiter). If a participant interacts with an arbiter
and aborts with him, the arbiter goes to his Aborted state, from where he will never switch to his
Resolved state. Similarly, if a participant resolves with an arbiter, the arbiter goes to his Resolved
state, from where he will never switch to his Aborted state.5

Definition 3 (Aborted and Resolved Protocol Instance). A protocol instance is called aborted if
both Alice and Bob ended at their Aborted states, and called resolved if both Alice and Bob ended
at their Resolved states.

5Due to the exclusive states assumption, these happen only if an arbiter is not already in his Resolved or Aborted
state, respectively.

4

Connection between arbiters’ state and Alice’s and Bob’s: A resolution makes sense
if at least one of the parties has not resolved yet. In such a case, Alice or Bob can end in their
Resolved states (unless they already are in their Aborted states) only if a set of arbiters end in their
Resolved states. This set of arbiters can be different for Alice or Bob. Actually, there can be more
than one set of arbiters that is enough for this resolution. All these will be clear in later sections
when we define those sets of arbiters that will be sufficient for resolution.

Autonomous arbiters assumption: We assume that the honest arbiters’ decisions are made
autonomously, without taking into account the decisions of the other arbiters. Arbiters can arrive
at the same decision seeing the same input, but they will not consider each other’s decision while
making their own decisions. In particular, this means no communication takes place between honest
arbiters (malicious arbiters can do anything they want).

Our goal in this is to distribute the trust efficiently. Without autonomy, byzantine fault tolerance
or secure multiparty computation techniques [17, 9, 10, 14] can be applied, yielding costly solutions
(Ω(n2) communication when n arbiters are employed). Furthermore, autonomy of the arbiters
render the deployment of such a real system practical, since no coordination of the arbiters is
necessary.

Yet, a dependence between the arbiters’ decisions can be generated by Alice or Bob, by con-
tacting the arbiters with some specific order. Therefore, to model the autonomy, we require the
protocol design to direct the honest participants to contact all the arbiters without any order.
More formally, when the ITM of an honest participant decides to contact the arbiters for dispute
resolution, the participant creates the message to send to all of the arbiters before receiving any
response from any arbiter. One can model this with the Dispute state in which the message to send
to the arbiters are prepared all at once. We will call this simultaneous (or unordered) resolve/abort.
Note that this only constrains honest Alice or Bob. A malicious party can introduce dependence
between messages to arbiters and responses from other arbiters. Later in Section 6 we will relax
this autonomy assumption and discuss its consequences. We realize that this assumption is not
necessary for most of our results, but helps making the presentation clearer.

All optimistic fair exchange protocols need to satisfy the following semantic fairness property.
Semantic Fairness: The semantic fairness property states that at the end of the protocol,

Alice and Bob both end at the same state (they both end at their Aborted states, or they both end
at their Resolved states). In other words, we need the protocol instance to be either resolved or
aborted as in Definition 3, for every possible instance of the protocol.6

Optimistic fair exchange protocols should also satisfy the timely resolution property, meaning
that the honest party need not wait indefinitely for any message from any other party. He can have
a local timeout mechanism with which he can decide to proceed without waiting. In particular,
he can end his side of the protocol any time he wants, ending at his Resolved or Aborted state,
according to the rules we defined above. Note that in general providing timely resolution guarantees
necessitates mutually exclusive Resolved and Aborted states, and a way for the arbiters to transition
to their Aborted states through interaction with other parties or through the use of timeouts.

Regular DAFE protocols do not have global timeout mechanisms, and the sets of arbiters that
Alice or Bob can resolve with are well-defined by the protocol, and does not change once the
honest party is in its Dispute state. We will show an extended version called DAFE with timeouts

6There will not be any cases where the honest party ends at its Resolved state whereas the malicious party ends at
its Aborted state and this affects our results. Therefore, this semantic fairness definition is enough for our purposes.
Furthermore, it is subjective whether or not to consider a case where two parties end at different states as fair.

5

(DAFET) where the protocols are allowed to use timeouts. At the timeout specified by the protocol,
honest arbiters transition into their Aborted states. This is done using the (loosely synchronized)
clocks of the ITMs. We call this event “an arbiter timeouts”. We allow the possible sets of arbiters
to resolve with to change at this timeout. This timeout model bypasses the impossibility results
for DAFE protocols. These will be clear later.

We will first provide examples of existing optimistic fair exchange protocols with intuitive
extensions to employ multiple autonomous arbiters and show how they fit our DAFE classification.
Then, after defining some notation, we will analyze different possible protocol instances under
different scenarios, and possible protocol types. We then show that it is impossible for some
common types of DAFE protocols to provide semantic fairness, thus warning researches not to
pursue that direction. We also analyze some positive results using global timeout mechanisms, and
prove the optimality of the bounds of the AV protocol, showing the usability of our framework for
easy analysis. We then discuss the role of autonomous arbiters and timeouts in our results and
elaborate on different ideas.

2.1 Sample DAFE Protocols

Many currently known optimistic fair exchange protocols can be considered as special cases of
DAFE protocols in which there is only one arbiter. In this section, we also discuss a way to extend
them to employ multiple autonomous arbiters. Unfortunately, this means, those extended protocols
cannot provide fairness, as we will prove later in this paper that no DAFE protocol can provide
fairness. Precisely, our impossibility result states that all arbiters need to be trusted in a DAFE
protocol, hence they are not realistic. For the special single-arbiter case, this points out to the
trust assumption on the arbiter.

To the best of our knowledge, all currently known optimistic fair exchange protocols adhere
with our framework. As a representative of optimistic fair exchange protocols, we will analyze a
protocol due to Asokan, Shoup and Waidner (ASW) [4]. They have two versions of their protocol:
one version that uses timeout-based aborts (can be converted to a DAFET protocol, see Section 7),
and one that does not employ timeouts (we will discuss now). It is considered one of the state-of-
the-art signature exchange protocols, and is the first completely fair optimistic exchange protocol.
A state-of-the-art optimistic fair exchange protocol for exchanging files are given in [18], and all
our discussion here applies to that protocol too. The ASW protocol without timeouts is described
below for reference:

1. Alice sends Bob a non-verifiable escrow of her signature, with a label defining how Bob’s
signature should look like. Bob checks if the definition is the correct definition.

2. Bob sends Alice a verifiable escrow of his signature, with the label defining how Alice’s
signature should look like and also attaching the escrow he obtained in step 1. Alice verifies
the verifiable escrow. She furthermore checks if the label is formed correctly. If anything goes
wrong at this step or a message timeout occurs, she aborts the protocols and runs AliceAbort
with the Arbiter.

3. Alice sends Bob her signature. Bob verifies this signature, and stops and runs BobResolve if
it does not verify or a message timeout occurs.

4. Bob sends Alice his signature. If the signature does not verify, Alice runs AliceResolve.

6

AliceAbort tells the Arbiter to consider that trade as aborted and not to honor any further
resolution request on that particular trade. BobResolve gets Alice’s signature by providing Bob’s
signature, and similarly, AliceResolve gets Bob’s signature by providing Alice’s signature.

In terms of the state semantics of the participants, it is clear that the ending states of the
participants can be parsed into Aborted and Resolved states which are mutually exclusive. Fur-
thermore, honest participants are not allowed to transition between Aborted and Resolved states.
In particular, once Alice aborts with the arbiter taking him to his Aborted state, he will refuse re-
solving with Bob. Since there is only one arbiter, it is autonomous. As for the connection between
arbiter’s state and Alice’s and Bob’s, it is clear that in case of a dispute, their state depends on
the arbiter’s.

Now, if we want to extend those protocols to use multiple autonomous arbiters, one easy way
is to employ verifiable secret sharing techniques [6, 22, 16]. The state-of-the-art optimistic fair
exchange protocols employ verifiable escrows [11, 13, 4, 18] under the (one and only) arbiter’s
public key. The intuition behind using verifiable escrows is that the recipient can verify, without
learning the actual content, that the encrypted content is the content that is promised and the
arbiter can decrypt it. Verifiable secret sharing techniques can be employed to split the promised
secret per arbiter. Each of these secrets will be encrypted under a different arbiter’s public key.
The recipient can still verify those encrypted shares can be decrypted and combined to obtain the
promised secret, thereby effectively achieving the same goal as a verifiable escrow, but for multiple
arbiters. For a detailed explanation of how to use verifiable secret sharing in distributing the
arbiters, we refer the reader to [6].

When we extend the ASW protocol to use multiple autonomous arbiters, instead of this verifiable
escrow, the participants will use verifiable secret sharing techniques as explained above and in [6].
Regardless of whether threshold- or set-based secret sharing mechanisms are used, the resolution
procedure now requires contacting multiple arbiters. For example, if the threshold for the secret
sharing method used is k, the resolution will involve contacting at least k arbiters.

In terms of the state semantics of the participants, it is clear that the ending states of the
participants can be parsed into Aborted and Resolved states which are mutually exclusive. Because
we assume the arbiters are contacted simultaneously, the autonomy of the arbiters hold. As for
the connection between arbiters’ state and Alice’s and Bob’s, since resolution needs k shares,
and secure secret sharing and encryption methods are used, a participant can obtain the other
participant’s exchange item if and only if (s)he resolves with at least k arbiters (in case of a
dispute). This relationship makes perfect sense when multiple autonomous arbiters are used, since
the main goal in distributing the arbiter is distributing the trust. Therefore, the goal is to find
some number of honest arbiters each one of which will individually contribute to dispute resolution
between participants by resolving or aborting with them. When arbitrary sets are used instead of
thresholds, it is easy to see all these arguments will still apply.

The same techniques can be applied to another state-of-the-art optimistic fair exchange protocol
[18] designed to exchange multiple files between participants. This protocol employs a verifiable
escrow for escrowing the payment (endorsement of an unendorsed e-coin [12]) sent by the partic-
ipants. All the arguments for the ASW protocol also apply here. Again, verifiable secret sharing
techniques as discussed above will be used instead of the verifiable escrow. The resolution mech-
anism will be similar to the ones we described for the extended ASW protocol. As for the state
semantics, a participant goes to her/his Resolved state if (s)he gets other participant’s file or e-coin,
and goes to his/her Aborted state otherwise.

7

In Section 4 we will analyze possible scenarios in an optimistic fair exchange protocol. The first
two scenarios will be applicable to this extended protocol types, as we show in Section 5, where we
analyze protocols that have the same structure as ASW protocol.

3 Notation

Remember that in a fair exchange scenario, Alice and Bob want to exchange some items fairly.
In case of a dispute, they need to contact the arbiters. They are allowed to take the following
two actions with the arbiters: abort or resolve. As noted in Definition 2, aborting with an honest
arbiter takes him to his Aborted state, whereas resolving with him would take him to his Resolved
state.7 Remember, those states are mutually exclusive, and there is no transition between them,
direct or indirect. We assume that the arbiters are autonomous: They do not take into account
other arbiters’ decision while acting. More formally, the honest participant contacts all arbiters
simultaneously (her messages to arbiters do not depend on any response from any of the arbiters).

Let N denote the set of all arbiters, where there are a total of n of them (|N | = n). An
honest arbiter acts as specified by the protocol. Let F be the set of arbiters who are friends with
a malicious participant. Those arbiters are adversarial.8

Define two sets HR and MR, which are sets of sets. Any set HR ∈ HR is a set of arbiters that
is sufficient for the honest party to resolve (as defined in Section 2 during the discussion about the
connection between arbiters’ state and Alice’s and Bob’s). Similarly, any set MR ∈ MR is a set of
arbiters that is sufficient for the malicious party to resolve. Therefore, by definition, in case of a
dispute, the honest party will end at her Resolved state if and only if she resolves with all the
arbiters in any one of the sets in HR (unless she already is in her Resolved state). Similarly, the
malicious party will end at his Resolved state if and only if he resolves with all the arbiters in
any one of the sets in MR (unless he already is in his Resolved state). For DAFE protocols, these
sets are well-defined by the protocol description, and do not change once the honest party enters its
Dispute state.

A special case of these sets can be represented as thresholds. Let TH be the number of arbiters
the honest party needs to contact for resolution. Similarly, TM denotes the number of arbiters the
malicious party needs to contact for resolution. Thus, the set HR is composed of all subsets of N
with TH or more arbiters. Similarly, the set MR is composed of all subsets of N with TM or more
arbiters.

Define RH as the set of arbiters the honest party H has already resolved with, and RM as the
set of arbiters the malicious party M has already resolved with. Also define RA as the set of all
arbiters that are available for H for resolution. Initially, when the dispute resolution begins, we
assume that RH = ∅, RM = F , and RA = N − F (and all arbiters are available for resolution to
the malicious party). We furthermore have the following actions and their effects on these sets:

Action 1 (H resolves with an arbiter X). The effect is that RH becomes RH ∪ {X}.

Action 2 (M resolves with an arbiter X). The effect is that RM becomes RM ∪ {X}.

Action 3 (H aborts with an arbiter X ∈ RA). The effect is that RA becomes RA − {X}.

Action 4 (M aborts with an arbiter X ∈ RA). The effect is that RA becomes RA − {X}.
7This happens only if an arbiter is not already in its Resolved or Aborted state, respectively.
8For example, they may appear as aborted to the honest party, but they may still resolve with the malicious party.

8

Note that we do not care what these sets actually are, or whether or not one can find such sets
of sets. For our impossibility result, it is enough that conceptually these sets of sets exist.

As in previous work on optimistic fair exchange [4, 18], we assume that the adversary can re-
order messages, delay the honest party’s messages to the arbiters, insert his own messages, etc.
But he cannot delay honest party’s messages indefinitely: the honest party eventually reaches the
arbiters that he wants to contact initially, and this occurs before the timeout if the protocol uses
timeout mechanisms.

3.1 DAFET protocols (DAFE protocols with timeouts):

In DAFET protocols, we allow for timeouts by giving the arbiters access to loosely synchronized
clocks. Instead of actions 3 and 4 above (honest or malicious party aborting), the following action
is allowed:

Action 5 (An arbiter X ∈ RA − RH − RM timeouts). The effect is that RA becomes RA − {X}.

Another difference between DAFE and DAFET protocols is the sets HR and MR being static
and dynamic, respectively. DAFE protocols define such sets as static: the overall set of arbiters
that needs to be contacted for resolution does not change with time once the honest party enters its
Dispute state (hence the notation HR and MR). In contrast, we allow DAFET protocols to employ
dynamic sets (hence the notation HR(t) and MR(t)). These sets may depend on the timeout and
possibly the parties’ actions in that particular instance of the protocol. Consider the following two
cases as illustrative examples: Some type of protocols allow, let’s say, Alice to resolve only after
a timeout. Some other type of protocols allow Alice to resolve only with an arbiter that Bob has
already resolved with (or vice versa). In analyzing such types of protocols, we will consider HR(t)
and MR(t) as dynamic, letting them change with those actions. We discuss the relation between
the use of timeouts and dynamic sets in fair exchange protocols more in Section 8.

We will consider any action that results in a change in those sets as new time steps, but there is
no need to treat other events as separate time steps since they do not constitute a significant part
of the analysis. Therefore, one can think as if any party can contact any number of arbiters at a
given time step t . t = 0 denotes the time when the dispute resolution begins (the time the honest
party enters its Dispute state, not the time the protocol execution begins).

Lastly, the set of friends of a malicious party can also change with time, if the adversary is
allowed to adaptively corrupt arbiters. In that case, we will use the notation F (t).

4 Framework for Analysis of DAFE Protocols

In this section, we will provide our framework for analyzing DAFE (and DAFET) protocols. Our
framework is composed of different scenarios that can take place during the execution of an instance
of a DAFE protocol. Once we have lemmas related to those scenarios stating the necessary (not
necessarily sufficient) conditions that need to be satisfied so that the given scenario satisfies the
semantic fairness property, then we can analyze different protocol types in the next section. For
example, the extended ASW protocol discussed in the previous section will be a protocol of type
0 (in Section 5) and will employ scenarios 0 and 0 (depending on which one of Alice and Bob
is malicious). Since our results are impossibility or lower bound type of results, it is enough to
analyze necessary (but maybe not sufficient) conditions. In all our scenarios (except the last one),

9

we assume that neither party is in the Resolved state yet. We consider dynamic resolution sets for
our scenario analysis, since static sets are a special case of dynamic sets.

4.1 Scenario 1: M can Abort

In this scenario, we consider a protocol instance where the malicious party has the ability to abort
and resolve. The honest party can abort and resolve too, but the results still apply even if he is
restricted to only resolve action. In this scenario, actions 1, 2, and 4 in Section 3 are possible. Our
results in this section will remain valid regardless of action 3 being possible.

Lemma 1. Every DAFE protocol instance needs to make sure that there exists a time t when
∀MR ∈ MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any time in the protocol instance ∃MR ∈ MR(t) s.t. ∀HR ∈ HR(t)
HR ̸⊆ MR − F (t). The malicious party can break fairness as follows: He aborts with the set of
arbiters RA − MR, and resolves with the set of arbiters MR. Since no HR is now a subset of the
available arbiters RA = MR − F (t), the honest party cannot resolve, while the malicious party
already resolved. Thus this protocol instance is unfair (does not satisfy semantic fairness).

Corollary 1. At any given time t during the protocol instance before the protocol is resolved for
H , we need ∀MR ∈ MR(t) MR ̸⊆ F (t) since otherwise we need ∃HR ∈ HR(t) s.t. HR = ∅.

Corollary 2. We need a time t to exist satisfying ∃HR ∈ HR(t) s.t. HR∩F (t) = ∅ since otherwise
the lemma cannot be satisfied (H can never resolve).

Corollary 3. Using threshold-based mechanisms, we need that there exists a time t that satisfies
TH ≤ TM − |F (t)|.

Corollary 4. Using threshold-based mechanisms, at any given time t during the protocol instance
before the protocol is resolved for H , we need TM > |F (t)| since otherwise we need TH ≤ 0.

Corollary 5. Using threshold-based mechanisms, we need a time t to exist satisfying TH ≤ n −
|F (t)| since otherwise H can never resolve.

4.2 Scenario 2: Only H can Abort

In this scenario, we assume that the malicious party has the ability to resolve only, whereas the
honest party can abort and resolve. In this scenario, actions 1 to 3 in Section 3 are possible (action
4 is not possible).

Lemma 2. Every DAFE protocol instance needs to make sure that there exists a time t when
∀MR ∈ MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any given time ∃MR ∈ MR(t) s.t. ∀HR ∈ HR(t) HR ̸⊆ MR − F (t).
The malicious party can break fairness as follows: When H wants to abort the protocol, M lets
abort messages to all arbiters in RA−MR to reach their destination, but intercept the messages to
MR − F (t) (F (t) really does not matter since his friends will help him anyways). He then resolves
with MR. Even if H notices this, he cannot go and resolve since there is no set HR ∈ HR(t) that
will allow him to. Therefore, this protocol instance also does not satisfy semantic fairness.

Note that Lemma 2 is the same as Lemma 1, and therefore all the corollaries apply to this
scenario too.

10

4.3 Scenario 3: H can Resolve only after Timeout

In this scenario, aborts can be caused by timeouts only. The malicious party can resolve before
and after the timeout, but the honest party can resolve only after the timeout. Therefore, actions
2 and 5 are possible, but not 3 and 4. Action 1 is possible only after the timeout.

Lemma 3. Every DAFET protocol instance needs to make sure there exists a time t when ∀MR ∈
MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any given time ∃MR ∈ MR(t) s.t. ∀HR ∈ HR(t) HR ̸⊆ MR − F (t).
The malicious party can break fairness as follows: M resolves with MR before the timeout. When
the timeout occurs, all arbiters in RA − RH − RM to go to their Aborted states (RH being the
empty set), which means now RA = MR−F (t). But H cannot resolve with the remaining available
arbiters and hence this protocol instance is not semantically fair.

Note that Lemma 3 is the same as Lemma 1, and therefore all the corollaries apply to this
scenario too.

4.4 Scenario 4: M already Resolved

All of the scenarios above assumed that both H and M start in their Working states when they are
performing the resolutions. Yet, it might be perfectly possible that the resolution starts at a point
in the protocol where one of the parties has already resolved (and hence is in its Resolved state).
If H has already resolved, then there is no point to further analyze, since we do not care if the
protocol is fair to the malicious party. But if M has already resolved, then we need the following
lemma to hold:

Lemma 4. Every DAFE protocol instance needs to make sure that there exists a time t when
∃HR ∈ HR(t) s.t. HR ∩ F (t) = ∅.

Proof. Assume at all times ∀HR ∈ HR(t) HR∩F (t) ̸= ∅. The malicious party has already resolved
but since all possible ways to resolve for H has to go through one of the malicious party’s friends,
he has no hope of resolving.

This lemma corresponds to corollary 2 and hence corollary 5 also applies here.

5 Impossibility Results on DAFE Protocols

The previous section analyzed possible scenarios in DAFE and DAFET protocol instances. In this
section, we will analyze DAFE protocol types, using the results from different scenarios that might
come up in instances of such protocols. We will conclude that no DAFE protocol can provide
fairness under any realistic assumption. DAFET protocols using dynamic sets are possible indeed,
and we analyze an existing DAFET protocol in Section 7.

For every protocol type, we will consider the following two cases: The case where the honest
player plays the role of Alice, and the case where he plays the role of Bob. We denote the set of
sets for Alice to resolve as AR(t); similarly BR(t) is for Bob to resolve. The difference in types of
protocols related to these sets being static or dynamic will play a big role. For ease of analysis (and
since it is enough for the impossibility results in this section) we will assume the friend list F (t)

11

of the malicious party is static (does not change with time).9 Since this is a weaker adversary, our
impossibility results will also apply when we consider stronger (adaptive) adversaries.We will use
FA to denote friends of a malicious Alice, and FB to denote friends of a malicious Bob.

In the DAFE protocol types below, we will consider the sets AR(t) and BR(t) as static (therefore
using the notation AR,BR), which eases the use of the lemmas. With static sets, we do not need
to consider different times in the protocol instance. A lemma saying there must exist a time t can
be simplified by just looking at the initial sets.

5.1 Protocol 1: Alice and Bob can Abort and Resolve

In this type of protocols, Alice is given the ability to abort and resolve, and Bob is also given the
ability to abort and resolve.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 1, which means
(for the static case) any DAFE protocol needs to have ∀BR ∈ BR ∃AR ∈ AR s.t. AR ⊆ BR − FB .

Case 2: Malicious Alice vs. Honest Bob: This case also falls under Scenario 1, which
means (again for the static case) any DAFE protocol needs to have ∀AR ∈ AR ∃BR ∈ BR s.t.
BR ⊆ AR − FA.

These two cases lead to the conclusion that every protocol instance needs two sets AR ∈ AR
and BR ∈ BR s.t. AR = BR ⊆ {trusted arbiters}. These arbiters must be trusted, and so there is
no point in distributing the arbiters. It is even worse: If any of these arbiters are corrupted, the
DAFE protocol fails to be fair. Therefore, no such realistic DAFE protocol can exist.

When considering threshold-based schemes, this corresponds to the requirement that TB ≤
TB −FA−FB , which means no party should have any friends for such a protocol to be fair. If even
one arbiter is corrupted, the protocol becomes unfair. Therefore, no such realistic DAFE protocol
can exist. Since set-based mechanisms cover threshold-based ones, we will not discuss threshold-
based schemes separately again unless necessary. All impossibility results proven for set-based
mechanisms directly apply in the context of threshold-based ones.

5.2 Protocol 2: Only one party can Abort

In this type of protocols, Alice is given the ability to abort and resolve, whereas Bob is given only
the ability to resolve. Analysis of protocols that are symmetric to this type of protocols (where
Bob can abort and resolve, and Alice can only resolve) obviously yields to the same conclusions.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 2, which requires
that DAFE protocols need to make sure ∀BR ∈ BR ∃AR ∈ AR s.t. AR ⊆ BR − FB .

Case 2: Malicious Alice vs. Honest Bob: This case falls under Scenario 1, which means
any DAFE protocol needs to have ∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR − FA.

We can conclude as in the previous section (Section 5.1) that every protocol instance needs two
sets AR ∈ AR and BR ∈ BR s.t. AR = BR ⊆ {trusted arbiters}. Again, this means there is no
point in distributing the arbiters in terms of trust. Remember that threshold-based versions have
the same impossibility.

Unfortunately, the versions of the state-of-the-art optimistic fair exchange protocols we analyzed
in Section 2.1 without any timeouts fall under this protocol category. Note that, this means, using
static resolution sets and autonomous arbiters, those protocols cannot be extended to use multiple
arbiters and remain fair.

9This corresponds to the familiar “static corruption model” in many other works.

12

6 Relaxing Autonomous Arbiters Assumption

In this section, we extend our framework by relaxing the autonomous arbiters assumption to allow
for ordered aborts by the honest party and therefore include a broader range of protocols in our
framework. We still assume that the honest arbiters do not try to communicate, but now the
honest parties can contact the arbiters following some particular order. We immediately notice
that the only places where we need that assumption are Scenario 2 and Protocol 2. Results about
all other scenarios and protocols stay unchanged when we do the relaxation by removing the explicit
Dispute state in the ITM definitions of the honest participants (Alice and Bob), thus allowing them
to contact the arbiters with some specific order. Yet, we still are not considering byzantine fault
tolerance or secure multiparty computation techniques.

6.1 Scenario 2 Revisited

In Section 4.2, we analyzed the scenario in which the malicious party has the ability to resolve
only, whereas the honest party can abort and resolve. We analyzed that scenario using the au-
tonomous arbiters assumption. Below, we will remove the requirement that arbiters are contacted
simultaneously, and revisit our analysis.

6.1.1 Scenario 2 with Threshold-based Mechanisms

Here, we are limiting our protocol instances to the case where only threshold-based mechanisms are
used.10 This means, the sets HR(t) and MR(t) are of the specific form we have described before.
Remember, the set HR(t) is composed of all subsets of N with TH or more arbiters. Similarly,
the set MR(t) is composed of all subsets of N with TM or more arbiters. TH and TM are the
corresponding thresholds.

Lemma 5. Every DAFE protocol instance needs to make sure there exists a time t when TH ≤
TM − |F (t)|.

Proof. Assume otherwise: At all times TH > TM − |F (t)|. Malicious party can break fairness as
follows: When H wants to abort the protocol (as directed by the protocol, most probably triggered
by an incorrect input from the malicious party), M waits until H aborts with n −TH +1 arbiters.
H can no longer resolve after this point since there are less than TH arbiters left in the set of
available arbiters RA. At this point, M intercepts any more abort messages from H and resolves
with TM − |F (t)| honest arbiters (as well as |F (t)| friends). Therefore, this protocol instance is
unfair (does not satisfy semantic fairness).

Notice that Lemma 5 is the same as Corollary 3. Therefore, Corollaries 4 and 5 also apply here.

6.1.2 Scenario 2 General Case

Now, we remove all the restrictions we made on our scenario in the previous sub-scenarios. This
means, we allow for any set-based resolution mechanism, and we even allow the protocol to specify
an order of arbiters for aborting, possibly depending on the execution of the protocol instance. One
can think of it as the honest party aborting with one arbiter at every time step, and reconsidering
his decision to abort each time. Therefore, the arbiters are no longer completely autonomous.

10Appendix 6.1.2 removes the threshold limitation and allows for any set-based resolution mechanism.

13

Lemma 6. Every DAFE protocol instance needs to make sure that at all times t ∀MR ∈ MR(t)
MR ̸⊆ F (t) (before H has resolved) AND there exists a time t when ∃HR ∈ HR(t) s.t. HR ∩F (t) =
∅.

Proof. Assume there exists a time when ∃MR ∈ MR(t) MR ̸⊆ F (t) (before H has resolved).
Malicious party can break fairness as follows: When H wants to abort the protocol, M lets him
abort with all the arbiters. Then, he goes and resolves with MR, all members of which are his
friends.

Now assume at all times ∀HR ∈ HR(t) HR ∩ F (t) ̸= ∅. Malicious party can break fairness by
just resolving with any MR ∈ MR(t). Since all possible ways to resolve for H has to go through
one of the malicious party’s friends, he has no hope of resolving.

In this general scenario, as in the previous cases, we would like to be able to prove that any
DAFE protocol instance needs to make sure there exists a time t when ∀MR ∈ MR(t) ∃HR ∈ HR(t)
s.t. HR ⊆ MR − F (t). Even though this seems a very plausible and realistic conclusion, several
problems arise with its proof.

The general idea is to use an adversary very similar to the one in Section 4.2. So, the adversary
will let H to abort with any arbiter in RA − MR. Then, if H wants to abort with an arbiter in
MR − F (t), M will intercept and resolve with MR. The problem is that this works depending on
the order of aborts. There might be a possible protocol construction and order specification that
makes sure H can still resolve once he detects this behavior. We do not know of and could not
come up with such a construction, due mostly to the fact that F (t) is unknown to the honest party,
and hence designing a protocol instance using an order that works without knowing F (t) seems
impossible. Even though the order may work for some protocol instances, having an order that
works with high probability (that works on all but negligible fraction of protocol instances) does
not seem possible. Furthermore, the moment we allow for more powerful adversaries, since the
order of arbiters for the honest participant to abort is public, the adversary might “bribe” some
“key” arbiters to become his friends and make sure the ordering fails to provide fairness (in the
dynamic/adaptive corruption model). We admit that we have no proof for this general case with
less powerful adversaries, but we conjecture that the same predicate for scenario 4.2 as before will
hold.

6.2 Protocol 2 Revisited (More Impossibility Results)

In this type of protocols, Alice is given the ability to abort and resolve, whereas Bob is given only
the ability to resolve. Analysis of protocols that are symmetric to this type of protocols (where
Bob can abort and resolve, and Alice can only resolve) obviously yields to the same conclusions.
The predicate for case 1 changes when we relax our autonomous arbiters assumption. Case 2 stays
the same. Remember, the resolution sets we consider here are static.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 2, which requires
special treatment when arbiters are not contacted simultaneously for aborting. For threshold-based
mechanisms, every DAFE protocol needs to have TA ≤ TB − |FB |. For the most general case of
DAFE protocols, we need ∀BR ∈ BR BR ̸⊆ FB AND ∃AR ∈ AR s.t. AR ∩ FB = ∅ (see Lemma 6
in Appendix 6.1.2).

Case 2: Malicious Alice vs. Honest Bob: This case falls under Scenario 1, which means
any DAFE protocol needs to have ∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR−FA. Remember, Corollary
3 (using threshold-based mechanisms) require TB ≤ TA − |FA|.

14

Regarding DAFE protocols using threshold-based arbiter resolution mechanisms, we can con-
clude (from the two cases above) that no such meaningful protocol can exist (TA ≤ TB − |FB | and
TB ≤ TA − |FA| gives TA ≤ TA − |FA| − |FB |, which means all the arbiters need to be trusted).
Hence, there is no point in distributing the arbiters in terms of trust. It is even worse since we need
to trust every single arbiter, and the protocol cannot be fair even if only one arbiter is corrupt.

Regarding general set-based DAFE protocols, we cannot conclude an immediate impossibility.
But following our discussion above, we conjecture that no such useful protocol can exist.

Unfortunately, as we have shown in Section 2.1, the versions of the state-of-the-art protocols we
analyzed in Section 2.1 without any timeouts fall under this protocol category. So the impossibility
with threshold-based mechanisms, and our conjecture apply to very common real cases, even when
the arbiters are not contacted simultaneously by the honest party.

7 Applying DAFET Framework to Prove Optimality of an Exist-
ing Protocol

In this section, we analyze an existing DAFET protocol that uses dynamic resolution sets: The
set of arbiters needed by a party for resolution changes during the course of the execution of
the protocol instance. By adjusting resolution sets reactively, this protocol can provide semantic
fairness.

AV Protocol [6] This protocol is due to Avoine and Vaudenay (AV) [6]. In this protocol,
timeouts are used for aborting (it is a DAFET protocol). It is a three-step protocol in which Alice
starts by sending verifiable secret shares encrypted under each arbiter’s public key. Then, Bob
responds with his secret, and Alice responds with her secret. To resolve, Bob contacts k arbiters
to get the decrypted shares and reconstruct the secret of Alice (where k is the threshold for the
secret sharing scheme). Before giving the decrypted share, each honest arbiter asks for the secret
of Bob.11 Hence, the set BR(t) contains all subsets of N with k or more arbiters and AR(t) is
initially empty12.

The state semantics obviously coincide with our 3-state definition. The participants either
succeed in obtaining the other party’s exchange item and hence end at their Resolved state, or they
fail to do so and end at their Aborted state. The honest arbiters will either help both participants,
or abort at the timeout and help neither.

Even though in the AV protocol the honest arbiters directly contact Alice when Bob resolves
with them, we can see it as the arbiters storing Bob’s secret, and Alice contacting them to obtain
Bob’s secret later on. Since Alice can only resolve after Bob, and Bob has to resolve before the
timeout, it is safe to think of this protocol as letting Alice to resolve only after the timeout. Unlike
the protocols in Section 5 which were proven impossible to be fair, this protocol uses dynamic
resolution sets that help it achieve fairness (we talk about the relationship between timeouts and
dynamic resolution sets in Section 8). So, sets HR(t) and MR(t) change according to the following
additional rule regarding the actions (remember the actions in Section 3):

Action 6 (Bob resolves with an arbiter X ∈ RA). The effect is that a set {X} is added to the set
of sets AR(t).

11The user should refer to [6] for any more details.
12It does not contain the empty set, it is empty. This means no set of arbiters is sufficient for Alice to resolve.

15

This rule is there since in the AV protocol, when Bob contacts an honest arbiter, that arbiter
contacts Alice and sends Bob’s whole secret. It guarantees that the moment a malicious Bob
resolves with any honest arbiter, Alice is guaranteed to be able to resolve. Let us analyze the two
cases and see how this protocol satisfies the lemmas regarding scenarios.

Case 1: Honest Alice vs. Malicious Bob: This case falls under Scenario 3, which means
any DAFET protocol needs to make sure there exists a time when ∀BR ∈ BR(t) ∃AR ∈ AR(t) s.t.
AR ⊆ BR − FB .

Case 2: Malicious Alice vs. Honest Bob: Depending on at which point of the protocol the
resolution begins, malicious Alice might have already resolved, thus this case falls under Scenario
4, which requires that there exists a time when ∃BR ∈ BR(t) s.t. BR ∩ FA = ∅.

Lemma 7. AV protocol cannot provide semantic fairness unless for all times t ∀BR ∈ BR(t)
BR ̸⊆ FB AND for some time t ∃BR ∈ BR(t) s.t. BR ∩ FA = ∅.

Proof. Follows from the analysis of the cases above using corollary 1 for case 1.

The AV protocol achieves semantic fairness using dynamic sets as follows: The set AR(t) is
initially empty. When Bob contacts an arbiter X, action 6 above takes place, and hence the set
{X} is added to the set of sets AR(t) (the threshold for Alice effectively becomes 1). Therefore,
once Bob contacts an honest arbiter (not one of his friends), then Alice is guaranteed to be able to
resolve. This saves an honest Alice against a malicious Bob (case 1). In case 2, as long as Bob can
find a set of honest arbiters that he can resolve with, he is saved against malicious Alice.

Actually, the AV protocol [6] uses threshold-based mechanisms instead of set-based ones, there-
fore we have the following corollary:

Corollary 6. AV protocol cannot provide semantic fairness unless |FB | < TB AND TB ≤ n−|FA|.

It is important to notice that the AV paper [6] proves essentially the same result: They prove
that the same bound is also sufficient for their protocol. Thus, we have proven that the bounds
proven in that paper are tight and hence the protocol is optimal in that sense. Furthermore,
this result is applicable to all protocols of the same type; no DAFET protocol of the same type
can achieve better bounds. In particular, the same technique of employing multiple autonomous
arbiters can be used on [4] and [18] (as described in Section 2.1) to convert their timeout-based
versions to DAFET protocols, and the same lemma will hold. This shows how our framework can
easily be applied to prove optimality of a protocol and extended to other protocols of the same
type.

As the corollary immediately reveals, when using n arbiters, to obtain maximum tolerance, one
should set the threshold for Bob TB = n/2 so that the protocol tolerates up to n/2− 1 friends of
each participant. Of course, this greatly reduces the efficiency of the resolution of the optimistic
fair exchange protocol.

The AV protocol needs to make the following assumption [6]: The threshold for the secret
sharing scheme used for distributing the arbiters must be greater than the number of friends
the malicious party can have. This limits the applicability of the protocol in real scenarios. If
the threshold is set very high to tolerate worse situations, then the efficiency greatly decreases.
Otherwise, if the threshold is low, than the tolerance against malicious behavior is low.

16

8 Discussion: Timeouts and Dynamic Resolution Sets

As we have proved in Section 5, no realistic DAFE protocol can provide fairness, whereas Section 7
shows an existing DAFET protocol that employs timeouts. Therefore, we can conclude that time-
outs play an important role in optimistic fair exchange protocols when we would like to employ
multiple autonomous arbiters. Even without completely autonomous arbiters, Section 6.2 shows
an impossibility of DAFE protocols using threshold-based mechanisms, and even with set-based
mechanisms, it is not clear how such a DAFE protocol can be constructed.

Timeouts are tied to the use of dynamic sets in general (as we did for DAFET protocols). When
only one party can resolve before the timeout, static resolution sets lose their meaning since the
resolution set for the party who cannot resolve before the timeout is empty until the timeout. That
set gets defined only after the timeout, which results in that set being dynamic in a very basic sense.
The dynamism prevents the adversary from coming up with a strategy that violates fairness. As
shown in Section 7, this helps AV protocol achieve semantic fairness. Of course, a careful protocol
design is still necessary since timeouts and dynamically changing sets by themselves do not mean
that the protocol will be trivially fair. One may further argue that dynamically changing resolution
sets is a more important concept that plays a big role in this (im)possibility result, but it is easy
to see that timeouts are natural mechanisms to achieve this dynamism.

This suggests that even though timeouts may not be a nice feature in terms of system design, it
really helps when the system needs to be extended to use multiple autonomous arbiters (together
with the use of dynamically changing resolution sets).

9 Conclusion

In this paper, we presented a framework to analyze DAFE protocols, which are natural extensions
of optimistic fair exchange protocols to make them use multiple autonomous arbiters (those who do
not communicate with each other). Autonomy is useful for realistic (efficient) protocols, especially
in p2p settings. Using the presented framework, we answered two open questions since [6]. We have
proved that DAFE protocols (optimistic fair exchange protocols that employ multiple autonomous
arbiters and does not have timeout mechanisms) cannot provide fairness in a realistic setting. Even
when we extended our framework by relaxing the autonomy assumption about the arbiters, we
found out that even broader classes of optimistic fair exchange protocols fall under our impossibility
results. We then switched to the DAFET model to include timeouts and dynamically changing
sets of arbiters to resolve with. We analyzed one existing DAFET protocol [6] using our framework
and proved that the previous bounds on the required number of honest arbiters are optimal. No
DAFET protocol of the same type can achieve better bounds, since our framework can easily be
used to come up with generalized results. We also showed that timeouts and dynamic resolution
sets play an important role in the design of such distributed arbiter fair exchange protocols.

Unfortunately, this means many optimistic fair exchange protocols that want to efficiently
distribute their arbiters may need to employ synchronized clocks. And even in this case, they
cannot hope to require fewer honest arbiters than the Avoine and Vaudenay protocol [6]. If they do
not want to employ synchronized clocks, then they may need to employ costly solutions like secure
multi-party computation or Byzantine agreement.

One may want to settle down for weaker security guarantees against weaker adversaries to
achieve cheaper solutions than Byzantine agreement. Using Byzantine fault tolerance techniques

17

in [1], the arbiters can keep updating some value that is related to the resolution semantics of the
fair exchange. Unfortunately, when aborts are considered, it is not clear if the same techniques can
be applied here. We leave research in this direction as an open problem.

Finally, our techniques may be applicable to other functionalities that can be implemented
using secure multi-party computation. By designing an appropriate framework, we may prove
more general results about achieving the same functionality using autonomous multiple parties.
We leave such a generalization as an interesting open problem.

References

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie. Fault-scalable byzantine
fault-tolerant services. In SOSP, 2005.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. In ACM
CCS, 1997.

[3] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. In
EUROCRYPT, 1998.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. IEEE
Selected Areas in Communications, 18:591–610, 2000.

[5] G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures. In ACM
CCS, 1999.

[6] G. Avoine and S. Vaudenay. Optimistic fair exchange based on publicly verifiable secret
sharing. ACISP, 2004.

[7] F. Bao, R. Deng, and W. Mao. Efficient and practical fair exchange protocols with off-line
TTP. In IEEE Security and Privacy, 1998.

[8] M. Belenkiy, M. Chase, C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya, and E. Rachlin.
Making p2p accountable without losing privacy. In ACM WPES, 2007.

[9] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In STOC, pages
52–61, 1993.

[10] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In STOC, 1988.

[11] J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their applications
to group signatures and signature sharing schemes. In ASIACRYPT, 2000.

[12] J. Camenisch, A. Lysyanskaya, and M. Meyerovich. Endorsed e-cash. In IEEE Security and
Privacy, 2007.

[13] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete loga-
rithms. In CRYPTO, 2003.

18

[14] R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal resilience. In
STOC, 1993.

[15] Y. Dodis, P. Lee, and D. Yum. Optimistic fair exchange in a multi-user setting. In PKC, 2007.

[16] E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly verifiable
secret sharing and its applications. In EUROCRYPT, volume 1403 of LNCS, pages 32–46,
1998.

[17] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, pages
218–229, 1987.

[18] A. Küpçü and A. Lysyanskaya. Usable optimistic fair exchange. In CT-RSA, 2010.

[19] S. Micali. Simultaneous electronic transactions with visible trusted parties. US Patent
5,553,145, 1996.

[20] S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In PODC, 2003.

[21] H. Pagnia and F. Gärtner. On the impossibility of fair exchange without a trusted third party.
Darmstadt University of Technology, TUD-BS-1999-02, 1999.

[22] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, 1991.

A Definition of Optimistic Fair Exchange Protocols

We provide an informal definition of optimistic fair exchange protocols taken from [18] just for
completeness.

A fair exchange protocol is composed of three interactive algorithms: Alice running algorithm
A, Bob running algorithm B, and the Arbiter running the trusted algorithm T . Alice has content
fA, and Bob has content fB

Completeness for an optimistic fair exchange states that the interactive run of A and B by
honest parties results in A getting fB and B getting fA (the Arbiter’s algorithm T is not involved,
assuming an ideal network).

Fairness states that at the end of the protocol, either Alice and Bob both get the content of each
other, or neither Alice nor Bob gets anything useful. For formal definitions, we refer the reader to
[18].

19

