
Dynamic Provable Data Possession

C. Chris Erway∗

Tracelytics
cce@cs.brown.edu

Alptekin Küpçü∗

Koç University
akupcu@ku.edu.tr

Charalampos Papamanthou∗

ECE and UMIACS, University of Maryland
cpap@umd.edu

Roberto Tamassia
Brown University
rt@cs.brown.edu

Abstract

As storage-outsourcing services and resource-sharing networks have become popular, the problem of efficiently
proving the integrity of data stored at untrusted servers has received increased attention. In the provable data
possession (PDP) model, the client preprocesses the data and then sends it to an untrusted server for storage, while
keeping a small amount of meta-data. The client later asks the server to prove that the stored data has not been
tampered with or deleted (without downloading the actual data). However, existing PDP schemes applies only to
static (or append-only) files.

We present a definitional framework and efficient constructions for dynamic provable data possession (DPDP),
which extends the PDP model to support provable updates to stored data. We use a new version of authenticated
dictionaries based on rank information. The price of dynamic updates is a performance change fromO(1) to
O(log n) (or O(nǫ logn)), for a file consisting ofn blocks, while maintaining the same (or better, respectively)
probability of misbehavior detection. Our experiments show that this slowdown is very low in practice (e.g., 415KB
proof size and 30ms computational overhead for a 1GB file). Wealso show how to apply our DPDP scheme to
outsourced file systems and version control systems (e.g., CVS).

Keywords: Provable Data Possession, Proof of Retrievability, Skip List, Integrity Checking, Memory Checking, Outsourced
Storage, Cloud Storage, Authenticated Data Structures.

1 Introduction

In cloud storage systems, the server (or peer) that stores the client’s data is not necessarily trusted. Therefore, users
would like to check if their data has been tampered with or deleted. However, outsourcing the storage of very large
files (or whole file systems) to remote servers presents an additional constraint: the client should not download all
stored data in order to validate it since this may be prohibitive in terms of bandwidth and time, especially if the client
performs this check frequently (thereforeauthenticated data structuresolutions [51] cannot be directly applied in this
scenario).

Ateniese et al. [2] have formalized a model calledprovable data possession(PDP). In this model, data (often
represented as a fileF) is preprocessed by the client, and metadata used for verification purposes is produced. The
file is then sent to an untrusted server for storage, and the client may delete the local copy of the file. The client
keeps some (possibly secret) information to check server’sresponses later. The server proves the data has not been
tampered with by responding to challenges sent by the client. The authors present several variations of their scheme
under different cryptographic assumptions. These schemesprovide probabilistic guarantees of possession, where the
client checks a random subset of stored blocks with each challenge.

However, PDP and related schemes [2, 15, 24, 47] apply only tothe case of static, archival storage, i.e., a file that
is outsourced and never changes (simultaneously with our work, Ateniese et al. [3] present a scheme with somewhat
limited dynamism, which is discussed in detail in the related work section). While the static model fits some applica-
tion scenarios (e.g., libraries and scientific datasets), it is crucial to consider the dynamic case, where the client updates
the outsourced data—by inserting, modifying, or deleting stored blocks or files—while maintaining data possession

∗Work mainly done while at Brown University.

1

Published version available at ACM: https://doi.org/10.1145/2699909

guarantees. Such a dynamic PDP scheme is essential in practical cloud computing systems for file storage [26, 33],
database services [34], and peer-to-peer storage [28, 37].

In this paper, we introduce a framework and efficient constructions fordynamic provable data possession(DPDP),
which extends the PDP model to support provableupdateson the stored data. Given a fileF consisting ofn blocks,
we define an update as either insertion of a new block (anywhere in the file, not only append), or modification of
an existing block, or deletion of any block. Therefore our update operation describes the most general form of
modifications a client may wish to perform on a file.

Our DPDP solution is based on a new variant of authenticated dictionaries, where we userank information to
organize dictionary entries. Thus we are able to support efficient authenticated operations on files at the block level,
such as authenticatedinsert anddelete. We prove the security of our constructions using standard assumptions.

We also show how to extend our construction to support data possession guarantees of a hierarchical file system
as well as file data itself. To the best of our knowledge, this is the first construction of a provable storage system that
enables efficient proofs of a whole file system, enabling verification at different levels for different users (e.g., every
user can verify her own home directory) and at the same time not having to download the whole data (as opposed
to [22]). Our scheme yields a provable outsourced versioning system (e.g., CVS), which is evaluated in Section 6 by
using traces of CVS repositories of three well-known projects.

1.1 Contributions

The main contributions of this work are summarized as follows:

1. We introduce a formal framework fordynamic provable data possession(DPDP);

2. We provide the first efficientfully dynamicPDP solution;

3. We present a rank-based authenticated dictionary built over a skip list. This construction yields a DPDP
scheme with logarithmic computation and communication andthe same detection probability as the original
PDP scheme (DPDP I in Table 1);

4. We give an alternative construction (Section 7.1) of a rank-based authenticated dictionary using an RSA
tree [42]. This construction results in a DPDP scheme with improved detection probability but higher server
computation (see DPDP II in Table 1);

5. We present practical applications of our DPDP constructions to outsourced file systems and versioning systems
(e.g., CVS, with variable block size support);

6. We perform an experimental evaluation of our skip list-based scheme.

Now, we outline the performance of our schemes. Denote withn the number of blocks. Theserver computation,
i.e., the time taken by the server to process an update or to compute a proof for a block, isO(log n) for DPDP I and
O(nǫ log n) for DPDP II; theclient computation, i.e., the time taken by the client to verify a proof returnedby the
server, isO(log n) for both schemes; thecommunication complexity, i.e., the size of the proof returned by the server
to the client, isO(log n) for both schemes; theclient storage, i.e., the size of the meta-data stored locally by the client,
is O(1) for both schemes; finally, theprobability of detection, i.e., the probability of detecting server misbehavior, is
1− (1−f)C for DPDP I and1− (1−f)Ω(log n) for DPDP II, for fixed logarithmic communication complexity, where
f is the ratio of corrupted blocks andC is a constant, i.e., independent ofn.

We observe that for DPDP I, we could use a dynamic Merkle tree (e.g., [32, 38]) instead of a skip list to achieve
the same asymptotic performance. We have chosen the skip list due to its simple implementation and the fact that
algorithms for updates in the two-party model (where clients can access only a logarithmic-sized portion of the data
structure) have been previously studied in detail for authenticated skip lists [41] but not for Merkle trees.

1.2 Related work

The PDP scheme by Ateniese et al. [2] provides an optimal protocol for thestaticcase that achievesO(1) costs for
all the complexity measures listed above. They review previous work on protocols fitting their model, but find these
approaches lacking: either they require expensive server computation or communication over the entire file [21, 40],
linear storage for the client [46], or do not provide security guarantees for data possession [45]. Note that using [2]

2

Scheme Server Client Comm. Model Block operations Probability
comp. comp. append modify insert delete of detection

PDP [2] O(1) O(1) O(1) RO X 1− (1− f)C

Scalable PDP [3] O(1) O(1) O(1) RO X
∗

X
∗

X
∗ 1− (1− f)C

DPDP I O(log n) O(log n) O(log n) standard X X X X 1− (1− f)C

DPDP II O(nǫ log n) O(log n) O(log n) standard X X X X 1− (1− f)Ω(log n)

Table 1: Comparison of PDP schemes: original PDP scheme [2];Scalable PDP [3]; our scheme based on authenticated
skip lists (DPDP I); and our scheme based on RSA trees (DPDP II). A star (*) indicates that a certain operation can
be performed only a limited (pre-determined) number of times. RO means the scheme is proven secure only in the
Random Oracle model. We denote withn the number of the blocks of the file, withf the fraction of the corrupted
blocks, and withC a constant, i.e., independent ofn. In all constructions, the storage space isO(1) at the client and
O(n) at the server.

in a dynamic scenario is insecure due to replay attacks. As observed in [16], in order to avoid replay attacks, an
authenticated tree structure that incurs logarithmic costs must be employed and thus constant costs are not feasible
(under certain assumtptions) in a dynamic scenario. The optimal PDP construction was generalized by Ateniese et al.
[5].

Juels and Kaliski presentproofs of retrievability(PORs) [24], focusing on static archival storage of large files.
Their scheme’s effectiveness rests largely on preprocessing steps that the client conducts before sending a fileF to
the server: “sentinel” blocks are randomly inserted to detect corruption,F is encrypted to hide these sentinels, and
error-correcting codes are used to recover from corruption. As expected, the error-correcting codes improve the error-
resiliency of their system. Unfortunately, these operations prevent any efficient extension to support updates, beyond
simply replacingF with a new fileF ′. Furthermore, the number of queries a client can perform is limited, and fixed
a priori. Shacham and Waters have an improved version of thisprotocol called Compact POR [47], but their solution
is also static (see [15] for a summary of POR schemes and related trade-offs).

In our solution, we regard encryption as external to our system. If the user wants to have confidentiality of her
data, she can provide us with a file whose blocks are encryptedindependently, for the sake of efficiency. If the the file
blocks are much larger than the block size of the block cipherused for encryption, which will be the case in reality,
then confidentiality requirement is satisfied without sacrificing performance, especially when our variable-block-size
scheme in Section 5 is employed. Since our construction doesnot modify the file and assumes no property on it, our
system will work in perfect compliance.

But, any other use of encrypting the file or employing error-correction codes will result in a huge degradation of
performance. For example, Compact POR uses Reed-Solomon codes [44]. Modification in a single block propagates
to O(n) other blocks in the file. Therefore, the cost metrics will alljump toΩ(n). One immediate idea to overcome
this problem is to employ erasure codes with locality. But using only local codes will be insecure, keeping the
probability of detecting a cheating adversary low while being able to effectively erase a block by erasing only a small
number of encoded blocks, as pointed out by Küpçü [29, 30].

Simultaneously with our work, Ateniese et al. have developed a dynamic PDP solution called Scalable PDP [3].
Their idea is to come up with all future challenges during setup and store pre-computed answers as metadata (at
the client, or at the server in an authenticated and encrypted manner). Because of this approach, the number of
updates and challenges a client can perform is limited and fixed a priori. Also, one cannot perform block insertions
anywhere (only append-type insertions are possible). Furthermore, each update requires re-creating all the remaining
challenges, which is problematic for large files. Under these limitations (otherwise the lower bound of [16] would
have been violated), they provide a protocol with optimal asymptotic complexityO(1) in all complexity measures
giving the same probabilistic guarantees as our scheme. Lastly, their work is in the random oracle model whereas our
scheme is provably secure in the standard model (see Table 1 for full comparison). A more detailed comparison with
variants [54, 55] developed after our DPDP construction is included in Section 7.2.

Several other related works deserve to be cited even though they are focused on distributing the storage to more
than a single server [9, 14], or cloud architecture [27], public verifiability via third parties [48, 53] or data recover-
ability [4].

Our work is also closely related tomemory checking, for which lower bounds are presented in [16, 39]. Specif-
ically, in [16] it is proved that all non-adaptive and deterministic checkers have read and write query complex-
ity summing up toΩ(log n/ log log n) (necessary for sublinear client storage), justifying theO(log n) cost in our

3

scheme. Note that for schemes based on cryptographic hashing, anΩ(log n) lower bound on the proof size has been
shown [13, 52]. Related bounds for other primitives have been shown by Blum et al. [7].

Recently, there were some interestingdynamic POR constructions. Iris [50] is based on the idea of aggregating
multiple updates from multiple clients and sending one batch update to the server. The aggregation is performed
by a trustedportal, and the performance is amortized. PORAM [10], on the other hand, employs oblivious RAM
techniques to hide the information about which blocks are being updated from the server. Since the server does not
get to observe which blocks are inter-related through the encoding, he cannot corrupt such an inter-related set to
effectively corrupt an original block. Moreover, they use erasure codes independently for each block, and thus keep
the construction efficient. Similar, more efficient, techniques have also emerged [49, 11].

Also recently, two other works have improved our version control system extension. First, Etemad and Küpçü
[20] realized that versions areappend-only, and thus we may employ static PDP to keep the versions. Later, Chen and
Curtmola [12] presented an even more efficient verifiable version control system.

2 Model

We build on the PDP definitions from [2]. We begin by introducing a general DPDP scheme and then show how the
original PDP model is consistent with this definition.

Definition 1 (DPDP Scheme)In a DPDP scheme, there are two parties. Theclient wants to off-load her files to
the untrustedserver. A complete definition of a DPDP scheme should describe the following (possibly randomized)
efficient procedures:

• KeyGen(1k) → {sk, pk} is a probabilistic algorithm run by theclient. It takes as input a security parameter, and
outputs a secret keysk and a public keypk. The client stores the secret and public keys, and sends the public key to
the server;

• PrepareUpdate(sk, pk,F , info,Mc) → {e(F), e(info), e(M)} is an algorithm run by theclient to prepare (a part
of) the file for untrusted storage. As input, it takes secret and public keys, (a part of) the fileF with the definition
info of the update to be performed (e.g., full re-write, modify blocki, delete blocki, add a block after blocki, etc.),
and the previous metadataMc. The output is an “encoded” version of (a part of) the filee(F) (e.g., by adding
randomness, adding sentinels, encrypting for confidentiality, etc.), along with the informatione(info) about the
update (changed to fit the encoded version), and the new metadata e(M). The client sendse(F), e(info), e(M) to
the server;

• PerformUpdate(pk,Fi−1,Mi−1, e(F), e(info), e(M)) → {Fi,Mi,M
′
c,PM ′

c

} is an algorithm run by theserver
in response to an update request from the client. The input contains the public keypk, the previous version
of the fileFi−1, the metadataMi−1 and the client-provided valuese(F), e(info), e(M). Note that the values
e(F), e(info), e(M) are the values produced byPrepareUpdate. The output is the new version of the fileFi and the
metadataMi, along with the metadata to be sent to the clientM

′
c and its proofPM ′

c

. The server sendsM ′
c,PM ′

c

to
the client;

• VerifyUpdate(sk, pk,F , info,Mc,M
′
c,PM ′

c

) → {accept, reject} is run by theclient to verify the server’s behavior
during the update. It takes all inputs of thePrepareUpdate algorithm,1 plus theM ′

c,PM ′

c

sent by the server. It
outputs acceptance (F can be deleted in that case) or rejection signals;

• Challenge(sk, pk,Mc) → {c} is a probabilistic procedure run by theclient to create a challenge for the server. It
takes the secret and public keys, along with the latest client metadataMc as input, and outputs a challengec that is
then sent to the server;

• Prove(pk,Fi,Mi, c) → {P} is the procedure run by theserver upon receipt of a challenge from the client. It takes
as input the public key, the latest version of the file and the metadata, and the challengec. It outputs a proofP that
is sent to the client;

1However, in our modelF denotes part of some encoded version of the file and not part ofthe actual data (though for generality purposes
we do not make it explicit).

4

• Verify(sk, pk,Mc, c, P) → {accept, reject} is the procedure run by theclient upon receipt of the proofP from the
server. It takes as input the secret and public keys, the client metadataMc, the challengec, and the proofP sent
by the server. An output of accept ideally means that the server still has the file intact. We will define the security
requirements of a DPDP scheme later.

We assume there is a hidden input and outputclientstatein all functions run by the client, andserverstatein
all functions run by the server. Some inputs and outputs may be empty in some schemes. For example, the PDP
scheme of [2] does not store any metadata at the client side. Also sk, pk can be used for storing multiple files,
possibly on different servers. All these functions can be assumed to take some public parameters as an extra input
if operating in the public parameters model, although our construction does not require such modifications. Apart
from {accept, reject}, algorithmVerifyUpdate can also output a new client metadataMc. In most scenarios, this new
metadata will be set asMc = M

′
c.

Retrieval of a (part of a) file is similar to the challenge-response protocol above, composed of
Challenge,Verify,Prove algorithms, except that along with the proof, the server also sends the requested (part of
the) file, and the verification algorithm must use this (part of the) file in the verification process. We also note that
a PDP scheme is consistent with the DPDP scheme definition, with algorithmsPrepareUpdate, PerformUpdate and
VerifyUpdate specifying an update that is a full re-write (or append).

As stated above, PDP is a restricted case of DPDP. The PDP scheme of [2] has the same algorithm definition for
key generation, defines a restricted version ofPrepareUpdate that can create the metadata for only one block at a
time, and definesProve andVerify algorithms similar to our definition. It lacks an explicit definition of Challenge
(though one is very easy to infer).PerformUpdate consists of performing a full re-write or an append (so thatreplay
attacks can be avoided), andVerifyUpdate is used accordingly, i.e., it always accepts in case of a fullre-write or it is
run as in DPDP in case of an append. It is clear that our definition allows a broad range of DPDP (and PDP) schemes.

We now define the security of a DPDP scheme, inspired by the security definitions of [2, 15]. Note that the
restriction to the PDP scheme gives a security definition forPDP schemes compatible with the ones in [2, 3].

Definition 2 (Security of DPDP) We say that a DPDP scheme is secure if for any probabilistic polynomial time
(PPT) adversary who can win the following data possession game with non-negligible probability, there exists an
extractor that can extract (at least) the challenged parts of the file by resetting and challenging the adversary polyno-
mially many times.

DATA POSSESSIONGAME: Played between the challenger who plays the role of the client and the adversary who
acts as a server.

1. KEYGEN: The challenger runsKeyGen(1k) → {sk, pk} and sends the public keypk to the adversary;

2. ACF QUERIES: The adversary is very powerful. The adversary can mount adaptive chosen file (ACF) queries
as follows. The adversary specifies a messageF and the related informationinfo specifying what kind of update
to perform (see Definition 1) and sends these to the challenger. The challenger runsPrepareUpdate on these
inputs and sends the resultinge(F), e(info), e(M) to the adversary. Then the adversary replies withM

′
c,PM ′

c

which are verified by the challenger using the algorithmVerifyUpdate. The result of the verification is told to
the adversary. The adversary can further request challenges, return proofs, and be told about the verification
results. The adversary can repeat the interaction defined above polynomially-many times;

3. SETUP: Finally, the adversary decides on messagesF
∗
i and related informationinfo∗i for all i = 1, . . . , R

of adversary’s choice of polynomially-large (in the security parameterk) R ≥ 1. The ACF interaction is
performed again, with the firstinfo∗1 specifying a full re-write (this corresponds to the first time the client
sends a file to the server). The challenger updates his local metadata only for the verifying updates (hence,
non-verifying updates are considered not to have taken place—data has not changed);

4. CHALLENGE: Call the final version of the fileF , which is created according to the verifying updates the
adversary requested in the previous step. The challenger holds the latest metadataMc sent by the adversary and
verified as accepting. Now the challenger creates a challenge using the algorithmChallenge(sk, pk,Mc) → {c}
and sends it to the adversary. The adversary returns a proofP . If Verify(sk, pk,Mc, c, P) accepts, then the
adversary wins. The challenger has the ability to reset the adversary to the beginning of the challenge phase
and repeat this step polynomially-many times for the purpose of extraction. Overall, the goal is to extract (at
least) the challenged parts ofF from the adversary’s responses which are accepting.

5

Definition 3 (Alternative Security Definition for DPDP) A DPDP scheme is secure if for any PPTf -adversary
who can win the data possession game with non-negligible probability onf -fraction of blocks, there exists a PPTf -
extractor algorithm that can extractf -fraction of blocks of the file with high probability by resetting and challenging
the adversary polynomially many times.

Theorem 1 Definitions 2 and 3 are equivalent.

Proof: Thef -extractor employs the extractor (in Definition 2) on subsets of all f -fraction of the blocks each time,
until all those blocks are extracted. If thef -adversary succeeds with non-negligible probability on thosef -fraction
of the blocks, then extractor will succeed in extracting subsets of these. For the other direction, as long as the number
of challenged blocks is less than or equal tof ∗ n, then the extractor can employ thef -extractor for the purposes of
extraction. ✷

Remark 1 1/n ≤ f ≤ 1, since the adversary must corrupt at least one block to attack successfully.

Remark 2 If f < 1 then the extractor cannot extract the whole file. In this case, the DPDP scheme should catch the
adversary with some probability. This “probability of detection” will be discussed later.

Note that our definition coincides with extractor definitions inproofs of knowledge. For an adversary that answers
a non-negligible fraction of the challenges, a polynomial-time extractor must exist. Furthermore, this definition canbe
applied to the POR case [15, 24, 47], in which by repeating thechallenge-response process, the extractor can extract
the whole file with the help of error-correcting codes. The probability of catching a cheating server is analyzed in
Section A.

Finally, if a DPDP scheme is to be truly publicly verifiable, theVerify algorithm should not make use of the secret
key. Since that is the case for our construction (see Section4), we can derive a public verifiability protocol usable for
official arbitration purposes; as explained by Küpçü [31].

3 Rank-based authenticated skip lists

In order to implement our first DPDP construction, we use a modified version of the authenticated skip list data
structure [23]. This new data structure, which we call arank-based authenticated skip list, is based on authenticated
skip lists but indexes data in a different way. Note that we could have based the construction on any authenticated
search data structure, e.g., Merkle tree [35] instead. Thiswould perfectly work for the static case. But in the dynamic
case, we would need an authenticated red-black tree, and unfortunately no algorithms have been previously presented
for rebalancing a Merkle tree while efficiently maintainingand updating authentication information (except for the
three-party model, e.g., [32]). Yet, such algorithms have been extensively studied for the case of the authenticated
skip list data structure [41]. Before presenting the new data structure, we briefly introduce authenticated skip lists.

The authenticated skip list is a skip list [43] (see Figure 1)with the difference that every nodev above the bottom
level (which has two pointers, namelyrgt(v) anddwn(v)) also stores a labelf(v) that is a cryptographic hash and
is computed using some collision-resistant hash functionh (e.g., SHA-1 in practice) as a function off(rgt(v)) and
f(dwn(v)). Using this data structure, one can answer queries like “does 21 belong to the set represented with this
skip list?” and also provide a proof that the given answer is correct. To be able to verify the proofs to these answers,
the client must always hold the labelf(s) of the top leftmost node of the skip list (nodew7 in Figure 1). We call
f(s) the basis(or root), and it corresponds to the client’s metadata in our DPDP construction (Mc = f(s)). In our
construction, the leaves of the skip list represent the blocks of the file. When the client asks for a block, the server
needs to send that block, along with a proof that the block is intact.

We can use an authenticated skip list to check the integrity of the file blocks. However, this data structure does not
support efficient verification of the indices of the blocks, which are used as query and update parameters in our DPDP
scenario. The updates we want to support in our DPDP scenarioare insertions of a new block after thei-th block
and deletion or modification of thei-th block (there is no search key in our case, in contrast to [23], which basically
implements an authenticated dictionary). If we use indicesof blocks as search keys in an authenticated dictionary, we
have the following problem. Suppose we have a file consistingof 100 blocksm1,m2, . . . ,m100 and we want to insert
a block after the40-th block. This means that the indices of all the blocksm41,m42, . . . ,m100 should be incremented,
and therefore an update becomes extremely inefficient. To overcome this difficulty, we define a new hashing scheme
that takes into account rank information.

6

v1
v8

0

4

v3v4v5

v7

v6 v9

w 3

w 4

w 5

w 6

w 7

3

12

11 10

5 4

1 1111 1 1 1 11 3 2

5

2 3

2

Figure 1: Example of rank-based skip list.

3.1 Authenticating ranks

Let F be a file consisting ofn blocksm1,m2, . . . ,mn. We store at thei-th bottom-level node of the skip list a
representationT (mi) of blockmi (we will defineT (mi) later). Blockmi will be stored elsewhere by the untrusted
server. Each nodev of the skip list stores the number of nodes at the bottom levelthat can be reached fromv. We
call this value therank of v and denote it withr(v). In Figure 1, we show the ranks of the nodes of a skip list. An
insertion, deletion, or modification of a file block affects only the nodes of the skip list along a search path. We can
recompute bottom-up the ranks of the affected nodes in constant time per node.

The top leftmost node of a skip list will be referred to as thestart node. For example,w7 is the start node of the
skip list in Figure 1. For a nodev, denote withlow(v) andhigh(v) the indices of the leftmost and rightmost nodes
at the bottom level reachable fromv, respectively. Clearly, for the start nodes of the skip list, we haver(s) = n,
low(s) = 1 andhigh(s) = n be the nodes that can be reached fromv by following the right or the down pointer
respectively. Using the ranks stored at the nodes, we can reach thei-th node of the bottom level by traversing a path
that begins at the start node, as follows. For the current node v, assume we knowlow(v) andhigh(v). Letw = rgt(v)
andz = dwn(v). We set

high(w) = high(v) ,

low(w) = high(v) − r(w) + 1 ,

high(z) = low(v) + r(z)− 1 ,

low(z) = low(v) .

If i ∈ [low(w), high(w)], we follow the right pointer and setv = w, else we follow the down pointer and setv = z.
We continue until we reach thei-th bottom node. Note that we do not have to storehigh andlow. We compute them
on the fly using the ranks.

In order to authenticate skip lists with ranks, we extend thehashing scheme defined in [23]. We consider a skip
list that stores data items at the bottom-level nodes. In ourapplication, the nodev associated with thei-th blockmi

stores itemx(v) = T (mi). Let l(v) be the level (height) of nodev in the skip list (l(v) = 0 for the nodes at the
bottom level).

Let || denote concatenation. We extend a hash functionh to support multiple arguments by defining

h(x1, . . . , xk) = h(h(x1)|| . . . ||h(xk)) .

We are now ready to define our new hashing scheme:

Definition 4 (Hashing scheme with ranks)Given a collision resistant hash functionh, the labelf(v) of a nodev of
a rank-based authenticated skip list is defined as follows.
Case 0: v = null

f(v) = 0 ;

7

Case 1: l(v) > 0
f(v) = h(l(v), r(v), f(dwn(v)), f(rgt(v))) ;

Case 2: l(v) = 0
f(v) = h(l(v), r(v), x(v), f(rgt(v))) .

Before inserting any block (i.e. if initially the skip list was empty), the basis, i.e., the labelf(s) of the top leftmost
nodes of the skip list, can easily be computed by hashing the sentinel values of the skip list; —the file consists of
only two “fictitious” blocks— block0 and block+∞.

node v v3 v4 v5 w3 w4 w5 w6 w7

l(v) 0 0 0 2 2 3 3 4
q(v) 0 1 1 1 1 5 1 1
g(v) 0 T (m4) T (m5) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 2: Proof for the5-th block of the fileF stored in the skip list of Figure 1.

3.2 Queries

Suppose now the fileF and a skip list on the file have been stored at the untrusted server. The client wants to verify
the integrity of blocki and therefore issues queryatRank(i) to the server. The server executes Algorithm 1, described
below, to computeT (i) and a proof forT (i) (for convenience we useT (i) to denoteT (mi)).

Let vk, . . . , v1 be the path from the start node,vk, to the node associated with blocki, v1. The reverse path
v1, . . . , vk is called theverification pathof block i. For each nodevj , j = 1, . . . , k, we define booleand(vj) and
valuesq(vj) andg(vj) as follows, where we conventionally setr(null) = 0:

d(vj) =

{

rgt j = 1 or j > 1 andvj−1 = rgt(vj)

dwn j > 1 andvj−1 = dwn(vj)
,

q(vj) =























r(rgt(vj)) if j = 1

1 if j > 1 andl(vj) = 0

r(dwn(vj)) if j > 1, l(vj) > 0 andd(vj) = rgt

r(rgt(vj)) if j > 1, l(vj) > 0 andd(vj) = dwn

,

g(vj) =























f(rgt(vj)) if j = 1

x(vj) if j > 1 andl(vj) = 0

f(dwn(vj)) if j > 1, l(vj) > 0 andd(vj) = rgt

f(rgt(vj)) if j > 1, l(vj) > 0 andd(vj) = dwn

.

The proof for block i with data T (i) is the sequenceΠ(i) = (A(v1), . . . , A(vk)) where A(v) =
(l(v), q(v), d(v), g(v)). So the proof consists of tuples associated with the nodes ofthe verification path. Boolean
d(v) indicates whether the previous node is to the right or belowv. For nodes above the bottom level,q(v) andg(v)
are the rank and label of the successor ofv that is not on the path. The proofΠ(5) for the skip list of Figure 1 is shown
in Table 2. Due to the properties of skip lists, a proof has expected sizeO(log n) with high probability (whp).

Algorithm 1 : (T ,Π) = atRank(i)

1: Let v1, v2, . . . , vk be the verification path for blocki;
2: return representationT of block i and proofΠ = (A(v1), A(v2), . . . , A(vk)) for T ;

8

Algorithm 2 : {accept, reject} = verify(i,Mc, T ,Π)

1: LetΠ = (A1, . . . , Ak), whereAj = (lj , qj , dj , gj) for j = 1, . . . , k;
2: λ0 = 0; ρ0 = 1; γ0 = T ; ξ0 = 0;
3: for j = 1, . . . , k do
4: λj = lj; ρj = ρj−1 + qj ; δj = dj ;
5: if δj = rgt then
6: γj = h(λj , ρj , γj−1, gj);
7: ξj = ξj−1;
8: else{δj = dwn}
9: γj = h(λj , ρj , gj, γj−1);

10: ξj = ξj−1 + qj ;
11: end if
12: end for
13: if γk 6= Mc then
14: return reject;
15: else if ρk − ξk 6= i then
16: return reject;
17: else{γk = Mc andρk − ξk = i}
18: return accept;
19: end if

3.3 Verification

After receiving from the server the representationT of block i and a proofΠ for it, the client executes Algorithm 2 to
verify the proof using the stored metadataMc.

Algorithm 2 iteratively computes tuples(λj , ρj , δj , γj) for each nodevj on the verification path plus a sequence
of integersξj. If the returned block representationT and proofΠ are correct, at each iteration of the for-loop, the
algorithm computes the following values associated with a nodevj of the verification path:

• integerλj = l(vj), i.e., the level ofvj ;

• integerρj = r(vj), i.e., the rank ofvj;

• booleanδj , which indicates whether the previous nodevj−1 is to the right or belowvj ;

• hash valueγj = f(vj), i.e., the label ofvj ;

• integerξj , which is equal to the sum of the ranks of all the nodes that areto the right of the nodes of the path
seen so far, but are not on the path.

Lemma 1 If T is the correct representation of blocki and sequenceΠ of lengthk is the correct proof forT , then the
following properties hold for the values computed in iteration k of the for-loop of Algorithm 2:

1. Valueρk is equal to the number of nodes at the bottom level of the skip list, i.e., the numbern of blocks of the
file;

2. Valueξk is equal ton− i; and

3. Valueγk is equal to the label of the start node of the skip list.

node v v2 v3 v4 v5 w w3 w4 w5 w6 w7

l(v) 0 0 0 0 1 2 2 3 3 4
r(v) 1 1 2 3 4 5 6 11 12 13
f(v) T T (m5) T (m4) T (m3) f(v2) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 3: The proofΠ′(5) as produced by Algorithm 4 for the update “insert a new block with dataT after block 5 at
level 1”.

9

3.4 Updates

The possible updates in our DPDP scheme are insertions of a new block after a given blocki, deletion of a blocki,
and modification of a blocki.

To perform an update, the client issues first queryatRank(i) (for an insertion or modification) oratRank(i − 1)
(for a deletion), which returns the representationT of block i or i − 1 and its proofΠ′. Also, for an insertion, the
client decides the height of the tower of the skip list associated with the new block. Next, the client verifies proof
Π′ and computes what would be the label of the start node of the skip list after the update, using a variation of the
technique of [41]. Finally, the client asks the server to perform the update on the skip list by sending to the server the
parameters of the update (for an insertion, the parameters include the tower height).

We outline in Algorithm 3 the update algorithm performed by the server (performUpdate) and in Algorithm 4 the
update algorithm performed by the client (verUpdate). Input parametersT ′ andΠ′ of verUpdate are provided by the
server, as computed byperformUpdate.

Since updates affect only nodes along a verification path, these algorithms run in expectedO(log n) time whp and
the expected size of the proof returned byperformUpdate is O(log n) whp.

Algorithm 3 : (T ′,Π′) = performUpdate(i, T , upd)

1: if upd is a deletionthen
2: set(T ′

i ,Π
′

i) = atRank(i) and(T ′

i−1
,Π′

i−1
) = atRank(i− 1);

3: setT ′ = T ′

i ∪ T ′

i−1
andΠ′ = Π′

i ∪Π′

i−1
;

4: else{upd is an insertion or modification}
5: set(T ′,Π′) = atRank(i);
6: end if
7: if upd is an insertionthen
8: insert elementT in the skip after thei-th element;
9: else ifupd is a modificationthen

10: replace withT thei-th element of the skip list;
11: else{upd is a deletion}
12: delete thei-th element of the skip list;
13: end if
14: update the labels, levels and ranks of the affected nodes;
15: return (T ′,Π′);

Algorithm 4 :
{accept, reject} = verUpdate(i,Mc, T , upd, T ′,Π′)

1: if upd is a deletionthen
2: split T ′ into T ′

i andT ′

i−1
. Also splitΠ′ intoΠ′

i andΠ′

i−1
;

3: setdecision = verify(i,Mc, T
′

i ,Π
′

i) ∧ verify(i− 1,Mc, T
′

i−1
,Π′

i−1
);

4: else{upd is an insertion or modification}
5: setdecision = verify(i,Mc, T

′,Π′);
6: end if
7: if decision = reject then
8: return reject;
9: else{decision = accept}

10: from i, T , T ′, andΠ′, compute and store the updated labelM
′

c of the start node;
11: return accept;
12: end if

To give some intuition of how Algorithm 4 produces proofΠ′(i), the reader can verify that Table 3 corresponds
to Π′(5), the proof that the client produces from Table 2 in order to verify the update “insert a new block with dataT
after block 5 at level 1 of the skip list of Figure 1”. This update causes the creation of two new nodes in the skip list,
namely the node that holds the data for the 6-th block,v2, and nodew (5-th line of Table 3) that needs to be inserted
in the skip list at level 1. Note thatf(v2) = h(0||1||T , 0||1||T (data(v1))) is computed as defined in Definition 4 and
that the ranks along the search path are increased due to the addition of one more block.

10

4 DPDP scheme construction

In this section, we present our DPDP I construction. First, we describe our algorithms for the procedures introduced in
Definition 1. Next, we develop compact representatives for the blocks to improve efficiency (blockless verification).
In the following,n is the current number of blocks of the file. The logarithmic complexity for most of the operations
are due to well-known results about authenticated skip lists [23, 42]. Most of the material of this section also applies
to the DPDP II scheme presented in Section 7.1.

4.1 Core construction

The server maintains the file and the metadata, consisting ofan authenticated skip list with ranks storing the blocks.
Thus, in this preliminary construction, we haveT (b) = b for each blockb. The client keeps a single hash value, called
basis, which is the label of the start node of the skip list. We implement the DPDP algorithms as follows.

• KeyGen(1k) → {sk, pk}: Our scheme does not require any keys to be generated. So, this procedure’s output is
empty, and hence none of the other procedures make use of these keys;

• PrepareUpdate(sk, pk,F , info,Mc) → {e(F), e(info), e(M)}: This is a dummy procedure that outputs the fileF

and informationinfo it receives as input.Mc ande(M) are empty (not used);

• PerformUpdate(pk,Fi−1,Mi−1, e(F), e(info), e(M)) → {Fi,Mi,M
′
c ,PM ′

c

}: InputsFi−1,Mi−1 are the previ-
ously stored file and metadata on the server (empty if this is the first run).e(F), e(info), e(M), which are output
by PrepareUpdate, are sent by the client (e(M) being empty). The procedure updates the file according toe(info),
outputtingFi, runs the skip list update procedure on the previous skip list Mi−1 (or builds the skip list from scratch
if this is the first run), outputs the resulting skip list asMi, the new basis asM ′

c, and the proof returned by the skip
list update asPM ′

c

. This corresponds to calling Algorithm 3 on inputs a block index j, the new dataT (in case of
an insertion or a modification) and the type of the updateupd (all this information is included ine(info)). Note that
the indexj and the type of the updateupd is taken frome(info) and the new dataT is e(F). Finally, Algorithm 3
outputsM ′

c andPM ′

c

= Π(j), which are output byPerformUpdate. The expected runtime isO(log n) whp;

• VerifyUpdate(sk, pk,F , info,Mc,M
′
c,PM ′

c

) → {accept, reject}: Client metadataMc is the label of the start node
of the previous skip list (empty for the first time), whereasM

′
c is empty. The client runs Algorithm 4 using the index

j of the update,Mc, previous dataT , the update typeupd, the new dataT ′ of the update and the proofPM ′

c

sent by
the server as input (most of the inputs are included ininfo). If the procedure accepts, the client setsMc = M

′
c (new

and correct metadata has been computed). The client may now delete the new block from its local storage. This
procedure is a direct call of Algorithm 4. It runs in expectedtimeO(log n) whp;

• Challenge(sk, pk,Mc) → {c}: This procedure does not need any input apart from knowing the number of blocks
in the file (n). It might additionally take a parameterC which is the number of blocks to challenge. The procedure
createsC random block IDs between1, . . . , n. This set ofC random block IDs are sent to the server and is denoted
with c. The runtime isO(C);

• Prove(pk,Fi,Mi, c) → {P}: This procedure uses the last version of the fileFi and the skip listMi, and the
challengec sent by the client. It runs the skip list prover to create a proof on the challenged blocks. Namely,
let i1, i2, . . . , iC be the indices of the challenged blocks.Prove calls Algorithm 1C times (with arguments
i1, i2, . . . , iC) and sends backC proofs. All theseC proofs form the outputP . The runtime isO(C log n) whp;

• Verify(sk, pk,Mc, c, P) → {accept, reject}: This function takes the last basisMc the client has as input, the
challengec sent to the server, and the proofP received from the server. It then runs Algorithm 2 using as inputs the
indices inc, the metadataMc, the dataT and the proof sent by the server (note thatT and the proof are contained
in P). This outputs a new basis. If this basis matchesMc then the client accepts. Since this is performed for all the
indices inc, this procedure takesO(C log n) expected time whp.

The above construction requires the client to download all the challenged blocks for the verification. A more efficient
method for representing blocks is discussed in the next section.

11

4.2 Blockless verification

We can improve the efficiency of the core construction by employing homomorphic tags, as in [2]. However, the tags
described here are simpler and more efficient to compute. Note that it is possible to use other homomorphic tags like
BLS signatures [8] as in Compact POR [47].

We represent a blockb with its tag T (b). Tags are small in size compared to data blocks, which provides two
main advantages. First, the skip list can be kept in memory. Second, instead of downloading the blocks, the client
can just download the tags. The integrity of the tags themselves is protected by the skip list, while the tags protect the
integrity of the blocks.

In order to use tags, we modify ourKeyGen algorithm to outputpk = (N, g), whereN = pq is a product of two
primes andg is an element of high order inZ∗

N . The public keypk is sent to the server; there is no secret key.
The tagT (b) of a blockb is defined by

T (b) = gb mod N .

The skip list now stores the tags of the blocks at the bottom-level nodes. Therefore, the proofs provided by the
server certify the tags instead of the blocks themselves. Note that instead of storing the tags explicitly, the server can
alternatively compute them as needed from the public key andthe blocks.

TheProve procedure computes a proof for the tags of the challenged blocksmij (1 ≤ i1, . . . , iC ≤ n denote the
challenged indices, whereC is the number of challenged blocks andn is the total number of blocks). The server also
sends a combined blockM =

∑C
j=1 ajmij , whereaj are random values sent by the client as part of the challenge.

The size of this combined block is roughly the size of a singleblock. Thus, we have a much smaller overhead than
for sendingC blocks. Also, theVerify algorithm computes the value

T =
C
∏

j=1

T (mij)
aj mod N ,

and accepts ifT = gM mod N and the skip list proof verifies.
TheChallenge procedure can also be made more efficient by using the ideas in[2]. First, instead of sending

random valuesaj separately, the client can simply send a random key to a pseudo-random function that will generate
those values. Second, a key to a pseudo-random permutation can be sent to select the indices of the challenged blocks
1 ≤ ij ≤ n (j = 1, . . . , C). The definitions of these pseudo-random families can be putinto the public key. See
[2] for more details on this challenge procedure. We can now outline our main result (for the proof of security see
Section A):

Theorem 2 Assume the existence of a collision-resistant hash function and that the factoring assumption holds. The
dynamic provable data possession scheme presented in this section (DPDP I) has the following properties, wheren
is the current number of blocks of the file,f is the fraction of tampered blocks, andC = O(1) is the number of blocks
challenged in a query:

1. The scheme is secure according to Definition 2;

2. The probability of detecting a tampered block is1− (1− f)C ;

3. The expected update time isO(log n) at both the server and the client whp;

4. The expected query time at the server, the expected verification time at the client and the expected communica-
tion complexity are eachO(log n) whp;

5. The client space isO(1) and the expected server space isO(n) whp.

Note that the above results hold in expectation and with highprobability due to the properties of skip lists [43].
Intuition for the Proof. Before looking at our full proof below, we present the intuition for our proof.
(1) Our challenger will have two sub-entities: Anextractorwho extracts the challenged blocks from the adver-

sary’s proof, and areductorwho breaks the collision-resistance of the hash function orfactorsN , if the extractor fails
to extract the original blocks. As the only difference from the real game, the challenger provides the reductor the

12

blocks (together with their ids) whose update proofs have verified, so that the reductor can keep them in its storage.
Note thatthe extractor does not know the original blocks, only the reductor does. Also note that the reductor keeps
updating the blocks in its storage when the adversary performs updates. Therefore, the reductor always keeps the
latest version of each block. This difference is invisible to the adversary, and so he will behave in the same way as he
would to an honest client.

(2) Consider the case where the version of our DPDP scheme without the tags is used (hence blockless-verification
is not possible). At the end of the security game, the adversary will reply to the challenge sent by the challenger. The
extractor just outputs the block(s) contained in the proof sent by the adversary. If this proof verifies, and hence the
adversary wins, it must be the case that either all the blocksare intact (and so the extractor succeeded in outputting
the original blocks) or otherwise the reductor breaks collision-resistance since now the original block together with
the extracted block constitute a collision, failing Lemma 2.

(3) Now we can consider the blockless-verification version of our DPDP construction. But, for simplicity, assume
that only one block is challenged. Call the block sent in the proof by the adversaryb, and the original challenged block
stored at the reductorm. The extractor just outputsb. If the extractor succeeds in extracting the correct block (i.e.
b = m), then we are done. Now suppose the extractor fails, which meansb 6= m. Now, if gb = gm mod N , then
the reductor breaks the factoring assumption, since this meansb = m mod φ(N) , which meansb − m = kφ(N)
for some integerk 6= 0 (since the extractor failed to extract the original block).Hence,L = b − m can be used in
Miller’s Lemma [36], which leads to factoringN . Otherwisegb 6= gm mod N . This means, there are two different
tags that can provide a verifying skip list proof. By Lemma 2,the reductor can break the collision-resistance of the
hash function by outputting(gb mod N) and(gm mod N).

Finally, we extend our simpler proofs above to a proof of the full scheme with multiple challenges (see Appendix).
The overall idea will be the same, and the way we will address multiple challenges will be by (i) solving a system of
linear equations as in the extractor at the last paragraph ofthe proof of Theorem 4.3 in [2], and (ii) finding a subset of
items that will work exactly as in case (3) above.

4.3 Generic Construction

At this point, we observe two main points that efficient DPDP constructions should have:

1. For efficient proofs (i.e. blockless verification), the DPDP scheme should use homomorphic tags over the data.
The homomorphism property was previously formalized by Ateniese et al. [5], and thus we do not want to
repeat the formalization here. Instead, we would like to mention possible alternative approaches and an intuitive
discussion below.

2. For dynamism of data, the DPDP protocol should employ a data structure with efficient membership queries
(i.e. an authenticated data structure). We will discuss possible alternative data structures below.

Thus, we can say that in general, a DPDP scheme does the following: (1) Considers the data as composed of some
number of chunks (e.g., as a single whole, orn blocks). (2) Creates homomorphic tags over the chunks. (3) Puts a
data structure on top of the tags.

When a challenge comes, the server does the following: (1) Creates the combined chunk in a way that will match
the homomorphic property of the tags. (2) Creates membership proofs using the data structure proving that the tags
of the challenged blocks are in the latest version of the datastructure. (3) Sends the combined chunk, together with
the data structure proofs (that include the tags) to the client as the proof.

Alternatives for Homomorphic Tags:
As long as the tags have a homomorphism property, this can be used to combine the chunks into a single large chunk,
providing blockless verification. It is possible that the tags include order information (e.g., PDP [2] tags contain a
hash of the block index in the tag), or the tags do not care about the order information (e.g., in our DPDP construction,
since rank-based authenticated skip list will handle the block indexing issues, tags are not related to block indices).
But, for a dynamic system to be efficient, it must be the case that the tags do not contain order information, since
otherwise an update may cause all tags to be updated.

Tags may be related to the file as a whole, to blocks of the file, or to even smaller units (e.g., sectors in POR [24]).
As seen in our tests in Section 6, the size of the unit in a tag matters for performance, and should be optimized.

13

Furthermore, as long as the homomorphic property is there, RSA-based tags, or BLS-signature-based tags may
be used, along with other alternatives. If a prime-order group is used for computing tags, it must be remembered
that each unit (e.g., block) must be smaller than the order ofthe group, since otherwise the server may just store the
equivalent value that is smaller than the group order and still pass the verification. RSA-type groups where the order
is unknown do not have this issue.

Alternatives for Ordered Data Structure:
Rank-based authenticated skip list is a neat example of an ordered and authenticated data structure that allows mem-
bership queries efficiently (O(log n) whp wheren is the number of leaves, which corresponds to the number of blocks
in the file). To the best of our knowledge, rank-based authenticated skip list is the first construction of an ordered au-
thenticated data structure that haslog n performance. Later variants (although not fully detailed)include Merkle trees
(used in [54]) and range-based 2-3 trees [55]. The most important advantage of a skip list over balanced trees is that
the authenticated version is much easier to implement, without the complication of the authenticated rebalancing op-
erations. Since a skip list will havelog n height with high probability, the need for complex authenticated balancing
operations to obtain guaranteedlog n performance is not well-justified. Recently, a variant of our rank-based au-
thenticated skip list construction called FlexList is alsoproposed, with improved efficiency, and the ability to handle
multiple challenges and updates at once [25, 18, 19].

Yet even more alternative authenticated data structures include hash lists (i.e. an array of hash values of each
block), or simply a hash of the whole file (in general, we consider this as a value rather than a data structure because
of its simplicity). But, such structures do not provide efficient DPDP. (1) If a single hash of the file is kept at the client,
even though this is very efficient in terms of client storage (O(1)) and server storage (no extra tags or data structure
to keep), the updates are very inefficient. Even a single change in the file would require recomputing the hash of the
whole file —an operation that is extremely slow for large files. (2) If a hash list is used, the client will needO(n)
space to keep one hash per block, even though the server storage is optimal as the first case. Modification of a block
will be anO(1) operation; just requiring the client to recompute the hash of that block. Yet, an insertion into the file
may causeO(n) time.

5 Extensions and applications

Our DPDP scheme supports a variety of distributed data outsourcing applications where the data is subject to dynamic
updates. In this section, we describe extensions of our basic scheme that employ additional layers of rank-based
authenticated dictionaries to store hierarchical, application-specific metadata for use in networked storage and version
control.

5.1 Variable-sized blocks

We now show how we can augment our hashing scheme to support variable-sized blocks (e.g., when we want to
update a byte of a certain block). Recall that our ranking scheme assigns each internal nodeu a rankr(u) equivalent
to the number of bottom-level nodes (data blocks) reachablefrom the subtree rooted atu; these nodes (blocks) are
conventionally assigned a rank equal to1. We support variable-sized blocks by defining the rank of a node at the
bottom level to be the size of its associated block (i.e. in bytes). Each internal node, in turn, is assigned a rank
equivalent to the amount of bytes reachable from it. Queriesand proofs proceed the same as before, except that ranks
and intervals associated with the search path refer to byte offsets, not block indices, with updates phrased as, e.g.,
“insert m bytes at byte offseti”. Such an update would require changing only the block containing the data at byte
indexi. Similarly, modifications and deletions affect only those blocks spanned by the range of bytes specified in the
update.

5.2 Directory hierarchies

We can also extend our DPDP scheme for use in storage systems consisting of multiple files within a directory
hierarchy. The key idea is to place the start node of each file’s rank-based authenticated structure (from our single-file
scheme) at the bottom node of a parent dictionary used to map file names to files. Using key-based authenticated
dictionaries [41], we can chain our proofs and update operations through the entire directory hierarchy, where each
directory is represented as an authenticated dictionary storing its files and subdirectories. Thus, we can use these

14

authenticated dictionaries in a nested manner, with the start node of the topmost dictionary representing the root of
the file system (as depicted in Figure 2(a)).

This extension provides added flexibility for multi-user environments. Consider a system administrator who em-
ploys an untrusted storage provider. The administrator cankeep the authenticated structure’s metadata corresponding
to the topmost directory, and use it to periodically check the integrity of the whole file system. Each user can keep
the label of the start node of the dictionary corresponding to her home directory, and use it to independently check the
integrity of her home file system at any time, without need forcooperation from the administrator.

Since the start node of the authenticated structure of the directory hierarchy is the bottom-level node of another
authenticated structure at a higher level in the hierarchy,upper levels of the hierarchy must be updated with each update
to the lower levels. Still, the proof complexity stays relatively low: For example, for the rank-based authenticated skip
list case, ifn is the maximum number of leaves in each skip list and the depthof the directory structure isd, then
proofs on the whole file system have expectedO(d log n) size and computation time whp.

(a) A file system skip list with blocks as leaves, directoriesand files
as roots of nested skip lists.

(b) A version control file system. Notice the additional level of
skiplists for holding versions of a file. To eliminate redundancy at the
version level, persistent authenticated skip lists could be used [1]: the
complexity of these proofs will then beO(log n+ log v + d log f).

Figure 2: Applications of our DPDP system.

5.3 Version control

We can build on our extensions further to efficiently supporta versioning system (e.g., a CVS repository, or versioning
filesystem). Such a system can be supported by adding anotheradditional layer of key-based authenticated dictionar-
ies [41], keyed by revision number, between the dictionaries for each file’s directory and its data, chaining proofs as in
previous extensions. (See Figure 2(b) for an illustration.) As before, the client needs only to store the topmost basis;
thus we can support a versioning system for a single file with only O(1) storage at the client andO(log n + log v)
proof complexity, wherev is the number of the file versions. For a versioning system spanning multiple directories,
let v be the number of versions andd be the depth of the directory hierarchy. The proof complexity for the versioning
file system has expected sizeO(d(log n+ log v)).

The server may implement its method of block storage independently from the dictionary structures used to au-
thenticate data; it does not need to physically duplicate each block of data that appears in each new version. However,
as described, this extension requires the addition of a new rank-based dictionary representing file data for each new
revision added (since this dictionary is placed at the leaf of each file’s version dictionary). In order to be more space-
efficient, we could usepersistentauthenticated dictionaries [1] along with our rank mechanism. These structures
handle updates by adding some new nodes along the update path, while preserving old internal nodes corresponding
to previous versions of the structure, thus avoiding unneeded replication of nodes.

6 Performance evaluation

We evaluate the performance of our DPDP I scheme (Section 4.2) in terms of communication and computational
overhead, in order to determine theprice of dynamismover static PDP. For ease of comparison, our evaluation uses

15

the same scenario as in PDP [2], where a server wishes to provepossession of a 1GB file. As observed in [2], detecting
a 1% fraction of incorrect data with 99% confidence requires challenging a constant number of 460 blocks; we use
the same number of challenges for comparison.

250

500

750

1000

1250

P
ro

o
f
si

ze
(K

B
)

P
ro

o
f
si

ze
(K

B
)

200 400 600 800 1000

Block size (KB)Block size (KB)

DPDP I (99%)
PDP (99%)

(a) Size of proofs of possession on a 1GB file, for 99% probability
of detecting misbehavior.

0

200

400

600

T
im

e
to

co
m

p
u
te

se
rv

er
p
ro

o
f
(m

s)
T

im
e

to
co

m
p
u
te

se
rv

er
p
ro

o
f
(m

s)

2 5 10 20 50 100 200

Block size (KB)Block size (KB)

Proof time: DPDP I (99%)
Proof time: PDP (99%)

(b) Computation time required by the server in response to a chal-
lenge for a 1GB file, with 99% probability of detecting misbehavior.

Figure 3: Price of Dynamism

6.1 Proof size

The expected size of proofs of possession for a 1GB file under different block sizes is illustrated in Figure 3(a). Here,
a DPDP proof consists of responses to 460 authenticated skiplist queries, combined with a single verification block
M = Σaimi, which grows linearly with the block size. The size of this block M is the same as that used by the
PDP scheme in [2]2, and is thus represented by the line labeled PDP. The distance between this line and those for our
DPDP I scheme represents our communication overhead—the price of dynamism—which comes from the skip list
query responses (illustrated in Table 2). Each response contains on average1.5 log n rows, so the total size decreases
exponentially (but slowly) with increasing block size, providing near-constant overhead except at very small block
sizes.

6.2 Server computation

Next, we measure the computational overhead incurred by theserver in answering challenges. Figure 3(b) presents the
results of these experiments (averaged from 5 trials), which were performed on an AMD Athlon X2 3800+ system with
2GHz CPU and 2GB of RAM. As above, we compute the time requiredby our scheme for a 1GB file under varying
block sizes, providing 99% confidence. As shown, our performance is dominated by computingM and increases
linearly with the block size; note that static PDP [2] must also compute thisM in response to the challenge. Thus
the computational price of dynamism—time spent traversingthe skip list and building proofs—while logarithmic in
the number of blocks, is extremely low in practice: even for a1GB file with a million blocks of size 1KB, computing
the proof for 460 challenged blocks (achieving 99% confidence) requires less than 40ms in total (as small as 13ms
with larger blocks). We found in other experiments that evenwhen the server is not I/O bound (i.e. when computing
M from memory) the computational cost was nearly the same. Note that any outsourced storage system proving the
knowledge of the challenged blocks must reach those blocks and therefore pay the I/O cost, and therefore such a small
overhead for such a huge file is more than acceptable.

The experiments suggest the choice of block size that minimizes total communication cost and computation over-
head for a 1GB file: a block size of 16KB is best for 99% confidence, resulting in a proof size of 415KB, and com-
putational overhead of 30ms. They also show that the price ofdynamism is a small amount of overhead compared to
the existing PDP scheme.

In terms of a practical deployment serving multiple clients, note that with 30ms per 460-block challenge, the
server throughput would be 33 clients per second using a single-core machine (with properties similar to the one in

2The authors present multiple versions of their scheme. The version without the knowledge of exponent assumption and therandom oracle
actually sends thisM ; other versions only compute it.

16

our tests). A 16-core server machine can serve more than 500 clients’ challenges per second. Considering the proof
size of 415 KB each, this would require the server to have about 1.65 Gbit/s upload bandwidth, which would be the
limiting factor in such a server deployment.

6.3 Version control

Finally, we evaluate an application that suits our scheme’sability to efficiently handle and prove updates to versioned,
hierarchical resources. Public CVS repositories offer a useful benchmark to assess the performance of the version
control system we describe in Section 5. Using CVS repositories for the Rsync3, Samba4 and Tcl5 projects, we
retrieved the sequence of updates from the RCS source of eachfile in each repository’s main branch. RCS updates
come in two types: “insertm lines at linen” or “deletem lines starting at linen”. Note that other partially-dynamic
schemes (i.e. Scalable PDP [3]) cannot handle these types ofupdates. For this evaluation, we consider a scenario
where queries and proofs descend a search path through hierarchical authenticated dictionaries corresponding (in
order) to the directory structure, history of versions for each file, and finally to the source-controlled lines of each file.
We use variable-sized data blocks, but for simplicity, assume a naı̈ve scheme where each line of a file is assigned its
own block; a smarter block-allocation scheme that collectscontiguous lines during updates would yield fewer blocks,
resulting in less overhead.

Rsync Samba Tcl
dates of activity 1996-2007 1996-2004 1998-2008

of files 371 1538 1757
of commits 11413 27534 24054
of updates 159027 275254 367105

Total lines 238052 589829 1212729
Total KBytes 8331 KB 18525 KB 44585 KB

Avg. # updates/commit 13.9 10 15.3
Avg. # commits/file 30.7 17.9 13.7

Avg. # entries/directory 12.8 7 19.8
Proof size, 99% 425 KB 395 KB 426 KB

Proof size per commit 13 KB 9 KB 15 KB
Proof time per commit 1.2ms 0.9ms 1.3ms

Table 4: Authenticated CVS server characteristics.

Table 4 presents performance characteristics of three public CVS repositories under our scheme; while we have
not implemented an authenticated CVS system, we report the server overhead required for proofs of possession for
each repository. Here, “commits” refer to individual CVS checkins, each of which establish a new version, adding a
new leaf to the version dictionary for that file; “updates” describe the number of inserts or deletes required for each
commit. Total statistics sum the number of lines (blocks) and kilobytes required to store all inserted lines across all
versions, even after they have been removed from the file by later deletions.

We use these figures to evaluate the performance of a proof of possession under the DPDP I scheme: as described
in Section 5, the cost of authenticating different versionsof files within a directory hierarchy requires time and space
complexity corresponding to the depth of the skip list hierarchy, and the width of each skip list encountered during
theProve procedure.

As in the previous evaluation, “Proof size, 99%” in Table 4 refers to the size of a response to 460 challenges over
an entire repository (all directories, files, and versions). This figure shows that clients of an untrusted CVS server—
even those storing none of the versioned resources locally—can query the server to prove possession of the repository
using just a small fraction (1% to 5%) of the bandwidth required to download the entire repository. “Proof size and
time per commit” refer to a proof sent by the server to prove that a single commit (made up of, on average, about a
dozen updates) was performed successfully, representing the typical use case. These commit proofs are very small
(9KB to 15KB) and fast to compute (around 1ms), rendering them practical even though they are required for each
commit. Our experiments show that our DPDP scheme is efficient and practical for use in distributed applications.

3http://rsync.samba.org/
4http://cvs.samba.org/
5http://www.tcl.tk/

17

7 Remarks

7.1 Rank-based RSA trees

We now describe how we can use ideas from [42] to implement theDPDP II scheme (see Table 1), which has a higher
probability of detection, maintains logarithmic communication complexity but has increased update time.

In [42], a dynamic authenticated data structure calledRSA treeis presented that achieves constant expected query
time (i.e., time to construct the proof), constant proof size, andO(nǫ log n) expected amortized update time, for a
given0 < ǫ < 1. We can add rank information to the RSA tree by explicitly storing ranks at the internal nodes. Using
this data structure allows the server to answerO(log n) challenges withO(log n) communication cost since the proof
for a block tag hasO(1) size.

The reason for sending additional challenges is the fact that the probabilityp of detection increases with number
C of challenges, sincep = 1 − (1 − f)C , wheref is the fraction of tampered blocks. Therefore, by using an RSA
tree with ranks to implement DPDP, we obtain the same complexity measures as DPDP I, except for the update time,
which increases fromO(log n) toO(nǫ log n) (expected amortized), and achieve an improved probabilityof detection
equal to1− (1− f)Ω(logn).

We now describe how we can use the tree structure from [42] to support rank information. In [42], anǫ is chosen
between 0 and 1 and a tree structure6 is built that hasO(1/ǫ) levels, each node having degreeO(nǫ). However,
there is no notion of order in [42]. To introduce a notion of order we assume that the elements lie at the leaves of
the tree and we view it as a B-tree with lower bound on the degree t = 3nǫ/4 and therefore upper bound equal to
2t = 3nǫ/2, which are both viewed as constants. Therefore we can use known B-tree algorithms to do the updates
with the difference that we rebuild the tree whenever the number of the blocks of the file increases fromn to 2n or
decreases fromn to n/4. When we rebuild, we set the new constants for the degree of the tree. By the properties of
the B-tree (all leaves lie at the same level), we can prove that it is not possible to change the number of the levels of
the tree before a new rebuilt takes place. To see that, suppose our file initially consists ofn blocks. Suppose now, for
contradiction that the number of the levels of the tree changes before a new rebuilt takes place. Note that a new rebuilt
takes place when at least3n/4 operations (insertions/deletions) take place. We distinguish two cases:

1. If the number of the levels of the tree increases, that means that the numberb of the added blocks is at least
n1+ǫ − n. Since there is no rebuilt it should be the case thatb ≤ 3n/4 and therefore thatn1+ǫ − n ≤ 3n/4,
which is a contradiction for largen;

2. If the number of the levels of the tree decreases, that means that the numberb of the deleted blocks is at least
n − n1−ǫ. Since there is no rebuilt it should be the case thatb ≤ 3n/4, and therefore thatn − n1−ǫ ≤ 3n/4,
which is again a contradiction for largen.

Therefore before a big change happens in the tree, we can rebuild (by using the sameǫ and by changing the node
degree) the tree and amortize. This is important, because the RSA tree structure works for trees that do not change
their depth during updates, since the constant proof complexity comes from the fact that the depth is not a function of
the elements in the structure (unlike B-trees), but is always maintained to be a constant.

Using the above provably secure authenticated data structure based on [42] to secure the tags (where security is
based on thestrong RSA assumption), we obtain the following result:

Theorem 3 Assume the strong RSA assumption and the factoring assumption hold. The dynamic provable data
possession scheme presented in this section (DPDP II) has the following properties, wheren is the current number of
blocks of the file,f is the fraction of tampered blocks, andǫ is a given constant such that0 < ǫ < 1:

1. The scheme is secure according to Definition 2;

2. The probability of detecting a tampered block is1− (1− f)Ω(logn);

3. The update time isO(nǫ log n) (expected amortized) at the server andO(1) (expected) at the client;

4. The expected query time at the server, the expected verification time at the client and the worst-case communi-
cation complexity are eachO(log n);

6The use of such a tree is dictated by the specific cryptographic primitive used.

18

5. The client space isO(1) and the server space isO(n).

Note that sendingO(log n) challenges in [2, 3] or DPDP I would increase the communication complexity from
O(1) to O(log n) and fromO(log n) toO(log2 n), respectively.

7.2 Other DPDP Constructions

Following ideas from [42], we can modify our scheme in Section 7.1 to implement DPDP III and DPDP IV schemes
(see Table 5), which are optimized for challenge-intensiveor update-intensive workloads, respectively. Both DPDP III
and DPDP IV schemes will achieve the same probability of detection as our DPDP I scheme. The reasons they are
presented as future work is that we have not analyzed their efficiency carefully, and hence the following table should
be taken only as a good guess of what will happen if ideas in [42] will be incorporated to our DPDP scheme keeping
the same tags and the challenge structure.

Scheme DPDP III DPDP IV

Update time (server) O(nǫ) O(1)

Challenge time (server) O(1) O(nǫ)

Client computation O(1) O(1)

Communication O(1) O(1)

Model Standard Standard
Append blocks X X

Modify blocks X X

Insert blocks X X

Delete blocks X X

Prob. of detection 1− (1− f)C 1− (1− f)C

Table 5: Two new DPDP schemes that will incorporate tags and proof techniques described in this chapter, together
with ideas from [42]. As before, we denote withn the number of the blocks of the file, withf the fraction of the
corrupted blocks, and withC being the number of challenged blocks (typically a constantindependent ofn). In all
constructions, the storage space isO(1) at the client andO(n) at the server.

7.3 POR vs. PDP

One can generalize most secure cloud storage schemes as PDP-type or POR-type schemes. Both type of schemes are
introduced with the same purpose: Alice wants to store her data at a server that may not necessarily be fully-trusted.
Alice would like to obtain a proof that her data is being kept intact at the server side. The most-widely-accepted
definitions for POR-type schemes appear in Compact POR [47] and its generalization [15]. We will use the definitions
in this paper for the PDP-type schemes.

Consider, as an example, Dropbox cloud storage system. WhenAlice signs up for Dropbox, it creates a directory
on the client’s computer, with some demonstration files inside, and immediately starts uploading those files. Thus,
by choosing these initial demonstration files, the adversary can easily mount a chosen-file attack. Furthermore, with
program updates, the adversary may update these files, thus forcing Alice’s computer to perform those updates on the
server. Therefore, we conclude that anadaptive chosen-file attackformulation is necessary. Note that this formulation
is similar to achosen-plaintext attackon an encryption scheme, and its history is full of justification for adopting such
a definition.

After the adversary mounts this adaptive chosen-file attack, then the challenger interacts with the adversary
through the challenge-response protocol. There needs to bean extractor, similar to the one in zero-knowledge proof
of knowledge (ZKPoK) systems, to make sure the server indeedkeeps the file intact. As in ZKPoK systems, the
extractor may rewind the adversary and re-challenge polynomially-many times.

Note that the initial POR-type definition [24] included the extractor as part of the actual scheme, and required
the actual server to be stateless to ensure it works. Later, it was realized that this is an unnecessary requirement, and
formulating an imaginary extractor as in the ZKPoK systems is enough to ensure security [2, 47, 17]. Therefore, we
allow the extractor to rewind the adversary, instead of assuming a stateless server. Obviously, we need the probability
that the extractor succeeds to be high.

19

We have seen that POR-type schemes provide very strong security guarantees bynecessarilysacrificing perfor-
mance. On the other hand, PDP-type schemes can work well under certain scenarios. Below, we analyze various
scenarios:

• For commercial applications that do not require extremely-high guarantees where the server may be semi-
trusted, PDP-type schemes may provide a sufficient guarantee. For example, Alice may trust that Amazon will
not intentionally modify a single bit of her data, but Amazonmay try to hide a system failure where a fraction
of her file is lost. In such a case, Amazon will be caught cheating using a PDP-type scheme.

• For the cases where the file itself is tolerant to minor modifications, again PDP-type schemes may be sufficient.
For example, regular text files may be tolerant to change in a few letters, image, video or audio files may tolerate
a few glitches here and there.

• When employed as a business practice by companies whose reputations matter, there is a great incentive not
to get caught, even with a low probability. Consider Amazon example again. If Amazon gets caught cheating,
then the financial losses will be intolerable. Note that, on the other hand, without any provable storage system
in use, Amazon is not necessarily afraid of corrupting user data, since there will be no proof.

• Moreover, the law of large numbers is a very important concern for secure cloud storage scenarios. Even though
the probability that a single user Alice catches Amazon cheating is low, Amazon has too many users. The law
of large numbers tells us that some users will catch Amazon cheating. Besides, remember that the analysis
above represents a single challenge-response scenario. Inreality, Alice will challenge the server multiple times.
Again, the law of large numbers tells us that even a single user Alice will catch Amazon cheating after multiple
challenge-response protocol executions.

The scenarios above are in line with thecovert adversaymodel for multi-party computation [6]. As argued by Aumann
and Lindell, this model represents realistic adversaries,those who are afraid of legal penalties. Thus, we can say PDP-
type schemes work well in such a covert adversary setting, and thus we expect them to perform as necessary in real
scenarios.

In summary, if performance is the main concern, PDP-type schemes should be employed, with the fact in mind
that a single challenge-response is not extremely binding,but multiple random challenges increase the probability of
catching dramatically. On the other hand, if immediate conclusion is required and the data is highly-sensitive, then
POR-type schemes with built-in erasure- and error-resistance must be employed. Note that, in both cases, if the server
corrupts all the data, there is no technical solution possible to retrieve back the original.

APPENDIX

A Security

In this section we prove the security of our DPDP scheme. While our proof refers specifically to the DPDP I scheme,
it also applies to the DPDP II scheme discussed in the next section. Indeed, the only difference between the two
schemes is the authenticated structure used for protectingthe integrity of the tags.

To prove security of our DPDP scheme, we need the following assumptions, definitions, facts and lemmas. We
begin with the following lemma, which follows from the two-party authenticated skip list construction (Theorem 1
of [41]) and our discussion in Section 3.

Lemma 2 Assuming the existence of a collision-resistant hash function, the proofs generated using our rank-based
authenticated skip list guarantees the integrity of its leavesT (mi) with non-negligible probability.

Definition 5 (Factoring assumption) For all PPT adversariesA and large-enough numberN = pq which is a
product of two primesp andq, the probability thatA can outputp or q givenN is negligible in the size ofp andq.

Definition 6 Euler’sφ function forN = pq wherep, q are primes is defined asφ(N) = (p− 1)(q − 1).

Definition 7 Carmichaelλ function forN = pq wherep, q are primes is defined asλ(N) = lcm(p− 1, q− 1) where
lcm(x, y) denotes the least common multiple ofx andy.

20

Fact 1 λ(N) | φ(N).

Lemma 3 (Miller’s Lemma [36]) Let L be a number divisible byλ(N). Then, there exists a PPT algorithm that
factorsN with non-negligible probability, givenL andN .

Theorem 4 (Security of DPDP protocol) The DPDP protocol is secure in the standard model according to Defini-
tion 2, assuming the existence of a collision-resistant hash function and that the factoring assumption holds.

Proof: The challenger is given a hash functionh, and an integerN = pq but notp or q. The challenger then samples a
high-order elementg from Z

∗
N . He interacts with the adversary in the data possession gamehonestly, using the given

hash function, and creates and updates the tags while usingN as the modulus andg as the base.
Suppose now the challenger challengesC blocks, namely the blocks with indicesi1, i2, . . . , iC . We recall that in

response to each challenge, the proof contains:

1. The tagsTi1 , Ti2 , . . . , TiC for each blocki1, i2, . . . , iC , along with the respective skip list proofs that correspond
to each tagTi1 , Ti2 , . . . , TiC ;

2. A “weighted” sum of the formB = ai1bi1 + ai2bi2 + . . . + aiC biC , whereaij (j = 1, . . . , C) are random
numbers known by the challenger.

According to Definition 2, the DPDP scheme is secure if, whenever the verification succeeds with non-negligible
probabilty (i.e. the adversary wins the data possession game), the challenger can extract the actual blocks (which we
denote withmi1 ,mi2 , . . . ,miC) in polynomially-many interactions with the adversary. The idea of the extraction is to
reset and challenge with independentaij and get enough independent linear equations that verifies from the adversary
to solve for eachmij (thus, the extractor is just an algebraic linear solver). Inthe equation above forB, we haveC
unknowns. Therefore, we can solve for individual blocksmij if we getC verifying linearly independent equations
on the same blocks. Therefore, if the adversary can respond to a non-negligible fraction of challenges, since the
extractor needs only polynomially-many (indeed,C) equations, by rewinding polynomially-many times, the extractor
can extract the original blocks. Now suppose the challengerchallenges the adversary for a polynomial number of
times and getsC verifying responses. Then ifB1, B2, . . . , BC are the weighted sums received each time, we have the
following equations:

B1 = ai11bi1 + ai12bi2 + . . .+ ai1C biC
B2 = ai21bi1 + ai22bi2 + . . .+ ai2C biC

...

BC = aiC1
bi1 + aiC2

bi2 + . . . + aiCC
biC

whereaij1 , aij2 , . . . , aijC for j = 1, . . . , C are different sets of random numbers sent each time with the challenge
andbi1 , bi2 , . . . , biC are the blocks that the adversary claims to possess. By solving this system of linear equations
we extract the blocksbi1 , bi2 , . . . , biC . This constitutes the extractor’s output, and if they correspond to the original
blocksmi1 ,mi2 , . . . ,miC , then we are done. Otherwise, meaning there is at least one non-matching block, we show
that the reductor can either break the factoring assumptionor the collision-resistance of the hash function.

Suppose now there is a subset of challenged blocks{b1, b2, . . . , bk} ⊆ {bi1 , bi2 , . . . , biC} such thatbj 6= mj for
all j = 1, . . . , k (i.e. the extractor failed for those blocks). Leta1, a2, . . . , ak andT1, T2, . . . , Tk be the random
numbers and the tags respectively that correspond to some response (i.e. to some linear equation of the system) for
blocks{b1, b2, . . . , bk}. The reductor first checks to see if there is any tag mismatch:T| 6= gmj mod N , for some
1 ≤ j ≤ k. If this is the case, the reductor can outputT| andgmj mod N for that particularj as a collision, using
Lemma 2.

Further remember that, since the adversary’s proof verified, we haveT
ai1
i1

T
ai2
i2

. . . T
aiC
iC

= gB mod N for all
B values above. The reductor now computesM =

∑

aijmij , and assuming there is no tag mis-match (otherwise

we would have broken collision-resistance above), we know that T
ai1
i1

T
ai2
i2

. . . T
aiC
iC

= gai1mi1
+ai2mi2

+...+aiCmiC

mod N . This means,gB = gM mod N . Now, if there is the subset{b1, b2, . . . , bk} of blocks that are different from
the original blocks (i.e.B 6= M), thenB −M can be used to factorN , by using Miller’s Lemma [36].

Therefore, if the adversary can respond to a non-negligiblefraction of challenges, since the extractor needs only
polynomially-many equations, by rewinding polynomially-many times, the challenger can either extract the original

21

blocks (using the extractor), or break the collision-resistance of the hash function used or the factoring assumption
(using the reductor) with non-negligible probability. This concludes the proof of Theorem 4.✷

Concerning the probability of detection, the client probesC blocks by calling theChallenge procedure. Clearly,
if the server tampers with a block other than those probed, the server will not be caught. Assume now that the server
tampers witht blocks. If the total number of blocks isn, the probability that at least one of the probed blocks matches
at least one of the tampered blocks is1−((n− t)/n)C , since choosingC of n−t non-tampered blocks has probability
((n− t)/n)C .

Acknowledgments

A preliminary version of this work appeared in the 16th ACM Conference on Computer and Communications Security
(ACM CCS 2009) [17]. Work supported in part by the U.S. National Science Foundation under grants CNS–0627553,
CNS–1228485, IIS–0713403 and OCI–0724806, by a research gift from NetApp, Inc., by the Center for Geometric
Computing and the Kanellakis Fellowship at Brown University, by TÜBİTAK, the Scientific and Technological Re-
search Council of Turkey, under project number 112E115, andby European Union COST Actions IC1306 and IC1206.
We thank Giuseppe Ateniese, Michael T. Goodrich, Anna Lysyanskaya, and Nikos Triandopoulos for many useful
discussions.

References

[1] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent authenticated dictionaries and their appli-
cations. InProceedings of the 4th International Conference on Information Security, ISC ’01, pages 379–393,
London, UK, 2001. Springer-Verlag.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and D. Song. Remote data
checking using provable data possession.ACM Transactions on Information and System Security (TISSEC),
14(1):12:1–12:34, June 2011.

[3] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable data possession. In
Proceedings of the 4th International Conference on Security and Privacy in Communication Netowrks, Se-
cureComm ’08, pages 9:1–9:10, New York, NY, USA, 2008. ACM.

[4] G. Ateniese, M. T. Goodrich, V. Lekakis, C. Papamanthou,E. Paraskevas, and R. Tamassia. Accountable storage.
Cryptology ePrint Archive, Report 2014/886, 2014.

[5] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic identification protocols. InInt.
Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT), pages 319–
333, 2009.

[6] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries.
Journal of Cryptology, 23:281–343, 2010.

[7] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.Algorithmica,
12(2):225–244, 1994.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. InProceedings of the 7th In-
ternational Conference on the Theory and Application of Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’01, pages 514–532, London, UK, UK, 2001. Springer-Verlag.

[9] K. D. Bowers, A. Juels, and A. Oprea. Hail: A high-availability and integrity layer for cloud storage. InACM
Int. Conference on Computer and Communications Security (CCS), pages 187–198, 2009.

[10] D. Cash, A. Küpçü, and D. Wichs. Dynamic proofs of retrievability via oblivious ram. InAnnual Int. Conference
on the Theory and Applications of Cryptographic Techniques(EUROCRYPT), pages 279–295, 2013.

22

[11] N. Chandran, B. Kanukurthi, and R. Ostrovsky. Locally updatable and locally decodable codes. InTCC, pages
489–514. Springer, 2014.

[12] B. Chen and R. Curtmola. Auditable version control systems. InProceedings of the ISOC 21st Annual Network
and Distributed System Security Symposium, NDSS ’14, 2014.

[13] D. E. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E. Suh. Incremental multiset hash functions and their
application to memory integrity checking. InProceedings of the 9th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’03, pages
188–207, 2003.

[14] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdp:Multiple-replica provable data possession. In
Proceedings of the 28th International Conference on Distributed Computing Systems, ICDCS, pages 411–420,
Washington, DC, USA, 2008. IEEE Computer Society.

[15] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability via hardness amplification. InProceedings of the 6th
Theory of Cryptography Conference on Theory of Cryptography, TCC ’09, pages 109–127, Berlin, Heidelberg,
2009. Springer-Verlag.

[16] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How efficient can memory checking be? In
Proceedings of the 6th Theory of Cryptography Conference onTheory of Cryptography, TCC ’09, pages 503–
520, Berlin, Heidelberg, 2009. Springer-Verlag.

[17] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia.Dynamic provable data possession. InACM Int.
Conference on Computer and Communications Security (CCS), pages 213–222, 2009.

[18] E. Esiner, A. Kachkeev, S. Braunfeld, A. Küpçü, and O. Özkasap. Flexdpdp: Flexlist-based optimized dynamic
provable data possession.Cryptology ePrint Archive, Report 2013/645, 2013.

[19] E. Esiner, A. Küpçü, and̈O. Özkasap. Analysis and optimization on flexdpdp: A practicalsolution for dynamic
provable data possession. InIntelligent Cloud Computing (ICC), 2014.

[20] M. Etemad and A. Küpçü. Transparent, distributed, and replicated dynamic provable data possession. InApplied
Cryptography and Network Security Conference (ACNS), pages 1–18, 2013.

[21] D. L. Gazzoni and P. S. L. M. Barreto. Demonstrating datapossession and uncheatable data transfer. Cryptology
ePrint Archive, Report 2006/150, 2006.

[22] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Triandopoulos. Athos: Efficient authentication of out-
sourced file systems. InProceedings of the 11th International Conference on Information Security, ISC ’08,
pages 80–96. Springer-Verlag, 2008.

[23] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary with skip lists
and commutative hashing. InDARPA Information Survivability Conference & Exposition II (DISCEX), pages
68–82, 2001.

[24] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for large files. InACM Int. Conference on Computer
and Communications Security (CCS), pages 584–597, 2007.

[25] A. Kachkeev, E. Esiner, A. Küpçü, and̈O. Özkasap. Energy efficiency in secure and dynamic cloud storage. In
Energy Efficiency in Large Scale Distributed Systems, EE-LSDS, pages 125–130, 2013.

[26] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. InProceedings of the 2nd USENIX Conference on File and StorageTechnologies, FAST ’03, pages 29–
42, Berkeley, CA, USA, 2003. USENIX Association.

[27] S. Kamara and K. Lauter. Cryptographic cloud storage. In Proceedings of the 14th International Conference on
Financial Cryptograpy and Data Security, FC’10, pages 136–149, Berlin, Heidelberg, 2010. Springer-Verlag.

23

[28] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: an architecture for global-scale persistent storage.ACM
SIGPLAN Not., 35(11):190–201, 2000.

[29] A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud. PhD thesis, Brown University, 2010.

[30] A. Küpçü. Efficient Cryptography for the Next Generation Secure Cloud: Protocols, Proofs, and Implementa-
tion. Lambert Academic Publishing, 2010.

[31] A. Küpçü. Official arbitration with secure cloud storage application.The Computer Journal, 2013.

[32] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index structures for outsourced
databases. InProceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’06, pages 121–132, New York, NY, USA, 2006. ACM.

[33] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data repository (sundr). InProceedings of the
6th Conference on Symposium on Opearting Systems Design & Implementation - Volume 6, OSDI’04, Berkeley,
CA, USA, 2004. USENIX Association.

[34] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a trusted database system on untrusted storage. In
Proceedings of the 4th Conference on Symposium on OperatingSystem Design & Implementation - Volume 4,
OSDI’00, pages 10–26, Berkeley, CA, USA, 2000. USENIX Association.

[35] R. Merkle. A digital signature based on a conventional encryption function. Int. Cryptology Conference
(CRYPTO), pages 369–378, 1987.

[36] G. L. Miller. Riemann’s hypothesis and tests for primality. In Proceedings of Seventh Annual ACM Symposium
on Theory of Computing, STOC ’75, pages 234–239, New York, NY, USA, 1975. ACM.

[37] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write peer-to-peer file system. InProceedings
of the 5th Symposium on Operating Systems Design and Implementation, OSDI ’02, pages 31–44, New York,
NY, USA, 2002. ACM.

[38] M. Naor and K. Nissim. Certificate revocation and certificate update. InProceedings of the 7th Conference on
USENIX Security Symposium - Volume 7, SSYM’98, Berkeley, CA, USA, 1998. USENIX Association.

[39] M. Naor and G. N. Rothblum. The complexity of online memory checking. InProceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’05, pages 573–584, Washington, DC, USA,
2005. IEEE Computer Society.

[40] A. Oprea, M. Reiter, and K. Yang. Space-efficient block storage integrity. InNDSS, 2005.

[41] C. Papamanthou and R. Tamassia. Time and space efficientalgorithms for two-party authenticated data struc-
tures. InProceedings of the 9th International Conference on Information and Communications Security,
ICICS’07, pages 1–15, Berlin, Heidelberg, 2007. Springer-Verlag.

[42] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. InProceedings of the 15th
ACM Conference on Computer and Communications Security, CCS ’08, pages 437–448, New York, NY, USA,
2008. ACM.

[43] W. Pugh. Skip lists: A probabilistic alternative to balanced trees.Commun. ACM, 33(6):668–676, June 1990.

[44] I. Reed and G. Solomon. Polynomial codes over certain finite fields.Journal of SIAM, 8:300–304, 1960.

[45] T. S. J. Schwarz and E. L. Miller. Store, forget, and check: Using algebraic signatures to check remotely
administered storage. InProceedings of the 26th IEEE International Conference on Distributed Computing
Systems, ICDCS ’06, Washington, DC, USA, 2006. IEEE Computer Society.

[46] F. Sebe, A. Martinez-Balleste, Y. Deswarte, J. Domingo-Ferre, and J.-J. Quisquater. Time-bounded remote file
integrity checking. Technical Report 04429, LAAS, July 2004.

24

[47] H. Shacham and B. Waters. Compact proofs of retrievability. Journal of Cryptology, 26(3):442–483, 2013.

[48] M. A. Shah, R. Swaminathan, and M. Baker. Privacy-preserving audit and extraction of digital contents. Tech-
nical report, HP Labs Technical Report No. HPL-2008-32, 2008.

[49] E. Shi, E. Stefanov, and C. Papamanthou. Practical dynamic proofs of retrievability. InACM Int. Conference on
Computer and Communications Security (CCS), pages 325–336, 2013.

[50] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea. Iris: A scalable cloud file system with efficient integrity
checks. InProceedings of the 28th Annual Computer Security Applications Conference, ACSAC ’12, pages
229–238, New York, NY, USA, 2012. ACM.

[51] R. Tamassia. Authenticated data structures. InEuropean Symposium on Algorithms (ESA), pages 2–5, 2003.

[52] R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data processing with applications
to information security. InProceedings of the 32Nd International Conference on Automata, Languages and
Programming, ICALP’05, pages 153–165, Berlin, Heidelberg, 2005. Springer-Verlag.

[53] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preservingpublic auditing for data storage security in cloud
computing. InProceedings of the 29th Conference on Information Communications, INFOCOM’10, pages
525–533, Piscataway, NJ, USA, 2010. IEEE Press.

[54] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and data dynamics for storage
security in cloud computing. InEuropean Symposium on Research in Computer Security (ESORICS), pages
355–370, 2009.

[55] Q. Zheng and S. Xu. Fair and dynamic proofs of retrievability. In Proceedings of the First ACM Conference on
Data and Application Security and Privacy, CODASPY ’11, pages 237–248, New York, NY, USA, 2011. ACM.

25

