Published version available at ACM: https://doi.org/10.1145/2699909

Dynamic Provable Data Possession

C. Chris Erway Alptekin Kuipgir Charalampos Papamanthou
Tracelytics Kog University ECE and UMIACS, University of Maryland
cce@cs.brown.edu akupcu@ku.edu.tr cpap@umd.edu

Roberto Tamassia
Brown University
rt@cs.brown.edu

Abstract

As storage-outsourcing services and resource-sharimgriet have become popular, the problem of efficiently
proving the integrity of data stored at untrusted servessreaeived increased attention. In the provable data
possession (PDP) model, the client preprocesses the dathemsends it to an untrusted server for storage, while
keeping a small amount of meta-data. The client later asksénver to prove that the stored data has not been
tampered with or deleted (without downloading the actugddaHowever, existing PDP schemes applies only to
static (or append-only) files.

We present a definitional framework and efficient constaungifor dynamic provable data possession (DPDP),
which extends the PDP model to support provable updatestedstiata. We use a new version of authenticated
dictionaries based on rank information. The price of dyrmaopdates is a performance change frori) to
O(logn) (or O(nlogn)), for a file consisting ofx blocks, while maintaining the same (or better, respegtjvel
probability of misbehavior detection. Our experimentsshitat this slowdown is very low in practice (e.g., 415KB
proof size and 30ms computational overhead for a 1GB file).al&le show how to apply our DPDP scheme to
outsourced file systems and version control systems (ev$s).C

Keywords: Provable Data Possession, Proof of Retrievability, Skit, LLhtegrity Checking, Memory Checking, Outsourced
Storage, Cloud Storage, Authenticated Data Structures.

1 Introduction

In cloud storage systems, the server (or peer) that stoeegliint’s data is not necessarily trusted. Therefore,suser
would like to check if their data has been tampered with oetéel. However, outsourcing the storage of very large
files (or whole file systems) to remote servers presents ai@ud constraint: the client should not download all
stored data in order to validate it since this may be prokibin terms of bandwidth and time, especially if the client
performs this check frequently (therefaethenticated data structusolutions [51] cannot be directly applied in this
scenario).

Ateniese et al. [2] have formalized a model callgvable data possessiqi®DP). In this model, data (often
represented as a filB) is preprocessed by the client, and metadata used for \agidficpurposes is produced. The
file is then sent to an untrusted server for storage, and thatahay delete the local copy of the file. The client
keeps some (possibly secret) information to check servesgonses later. The server proves the data has not been
tampered with by responding to challenges sent by the cliemt authors present several variations of their scheme
under different cryptographic assumptions. These sch@noetde probabilistic guarantees of possession, where the
client checks a random subset of stored blocks with eacteciugz.

However, PDP and related schemes [2, 15, 24, 47] apply onhetoase of static, archival storage, i.e., a file that
is outsourced and never changes (simultaneously with otk,wdeniese et al. [3] present a scheme with somewhat
limited dynamism, which is discussed in detail in the relatrk section). While the static model fits some applica-
tion scenarios (e.g., libraries and scientific datasetis)crucial to consider the dynamic case, where the cliedatgs
the outsourced data—by inserting, modifying, or deletituyesi blocks or files—while maintaining data possession

*Work mainly done while at Brown University.

guarantees. Such a dynamic PDP scheme is essential incpfadtiud computing systems for file storage [26, 33],
database services [34], and peer-to-peer storage [28, 37].

In this paper, we introduce a framework and efficient comsimas fordynamic provable data possessi@PDP),
which extends the PDP model to support provalpgdateson the stored data. Given a filé consisting ofn blocks,
we define an update as either insertion of a new block (anyinethe file, not only append), or modification of
an existing block, or deletion of any block. Therefore oudalie operation describes the most general form of
modifications a client may wish to perform on a file.

Our DPDP solution is based on a new variant of authenticaigttbdaries, where we usenk information to
organize dictionary entries. Thus we are able to suppodieffi authenticated operations on files at the block level,
such as authenticateoksert anddelete. We prove the security of our constructions using standssdraptions.

We also show how to extend our construction to support datagssion guarantees of a hierarchical file system
as well as file data itself. To the best of our knowledge, thihié first construction of a provable storage system that
enables efficient proofs of a whole file system, enablingfication at different levels for different users (e.g., gver
user can verify her own home directory) and at the same timdnawing to download the whole data (as opposed
to [22]). Our scheme yields a provable outsourced versgeystem (e.g., CVS), which is evaluated in Section 6 by
using traces of CVS repositories of three well-known prigjec

1.1 Contributions

The main contributions of this work are summarized as fallow
1. We introduce a formal framework folynamic provable data possessi@PDP);
2. We provide the first efficierflly dynamicPDP solution;

3. We present a rank-based authenticated dictionary budt a skip list. This construction yields a DPDP
scheme with logarithmic computation and communication #yedsame detection probability as the original
PDP scheme (DPDP | in Table 1);

4. We give an alternative construction (Section 7.1) of &+aased authenticated dictionary using an RSA
tree [42]. This construction results in a DPDP scheme withrowed detection probability but higher server
computation (see DPDP Il in Table 1);

5. We present practical applications of our DPDP constustto outsourced file systems and versioning systems
(e.g., CVS, with variable block size support);

6. We perform an experimental evaluation of our skip listdzhscheme.

Now, we outline the performance of our schemes. Denote mitie number of blocks. Theerver computation
i.e., the time taken by the server to process an update omtpute a proof for a block, i€ (log n) for DPDP | and
O(nflogn) for DPDP lI; theclient computationi.e., the time taken by the client to verify a proof returrimdthe
server, isO(log n) for both schemes; theommunication complexity.e., the size of the proof returned by the server
to the client, i0(log n) for both schemes; thdient storagei.e., the size of the meta-data stored locally by the client
is O(1) for both schemes; finally, thgrobability of detectioni.e., the probability of detecting server misbehavior, is
1—(1— f)¢ for DPDP Il andl — (1 — f)*(l°g™) for DPDP I, for fixed logarithmic communication complexityhere
f is the ratio of corrupted blocks artdis a constant, i.e., independentrof

We observe that for DPDP I, we could use a dynamic Merkle eg,([32, 38]) instead of a skip list to achieve
the same asymptotic performance. We have chosen the skifubsto its simple implementation and the fact that
algorithms for updates in the two-party model (where cherein access only a logarithmic-sized portion of the data
structure) have been previously studied in detail for antthated skip lists [41] but not for Merkle trees.

1.2 Related work

The PDP scheme by Ateniese et al. [2] provides an optimabpebtfor thestatic case that achieve3(1) costs for

all the complexity measures listed above. They review previwork on protocols fitting their model, but find these
approaches lacking: either they require expensive seprapatation or communication over the entire file [21, 40],
linear storage for the client [46], or do not provide segugtiarantees for data possession [45]. Note that using [2]

2

Scheme Server Client Comm. Model Block operations Probability

comp. comp. append | modify | insert | delere | Of detection
PDP [2] Oo(1) Oo(1) o(1) RO v 1-(1-/)°
Scalable PDP [3]] O(1) o(1) o(1) RO VA Ve l1i—a=-p°
DPDP | O(logn) O(logn) | O(logn) | standard| v/ v v v 1-(1-f°
DPDP Il O(nlogn) | O(logn) | O(logn) | standard| v v v v 1—(1— f)fesm

Table 1: Comparison of PDP schemes: original PDP schem&¢2]able PDP [3]; our scheme based on authenticated
skip lists (DPDP 1); and our scheme based on RSA trees (DPDR Btar (*) indicates that a certain operation can
be performed only a limited (pre-determined) number of §imRO means the scheme is proven secure only in the
Random Oracle model. We denote witithe number of the blocks of the file, withithe fraction of the corrupted
blocks, and with”' a constant, i.e., independentsaf In all constructions, the storage spac®id) at the client and
O(n) at the server.

in a dynamic scenario is insecure due to replay attacks. Asrgbd in [16], in order to avoid replay attacks, an
authenticated tree structure that incurs logarithmicscostist be employed and thus constant costs are not feasible
(under certain assumtptions) in a dynamic scenario. ThienapPDP construction was generalized by Ateniese et al.
[5].

Juels and Kaliski presemtroofs of retrievability(PORS) [24], focusing on static archival storage of largesfil
Their scheme’s effectiveness rests largely on prepraugstieps that the client conducts before sending aFfite
the server: “sentinel” blocks are randomly inserted to cteterruption, F' is encrypted to hide these sentinels, and
error-correcting codes are used to recover from corrup#iaexpected, the error-correcting codes improve the-error
resiliency of their system. Unfortunately, these operetiprevent any efficient extension to support updates, loeyon
simply replacingF’ with a new fileF’. Furthermore, the number of queries a client can perforimisdd, and fixed
a priori. Shacham and Waters have an improved version opthi®col called Compact POR [47], but their solution
is also static (see [15] for a summary of POR schemes anedetictde-offs).

In our solution, we regard encryption as external to ouresystlf the user wants to have confidentiality of her
data, she can provide us with a file whose blocks are encrypdeghendently, for the sake of efficiency. If the the file
blocks are much larger than the block size of the block cipised for encryption, which will be the case in reality,
then confidentiality requirement is satisfied without d&airig performance, especially when our variable-blodesi
scheme in Section 5 is employed. Since our construction "oesodify the file and assumes no property on it, our
system will work in perfect compliance.

But, any other use of encrypting the file or employing errmrection codes will result in a huge degradation of
performance. For example, Compact POR uses Reed-Solondes p&4]. Modification in a single block propagates
to O(n) other blocks in the file. Therefore, the cost metrics willjathp to2(n). One immediate idea to overcome
this problem is to employ erasure codes with locality. Buhgsonly local codes will be insecure, keeping the
probability of detecting a cheating adversary low whilengeable to effectively erase a block by erasing only a small
number of encoded blocks, as pointed out by Kiipg¢ii [29, 30]

Simultaneously with our work, Ateniese et al. have developelynamic PDP solution called Scalable PDP [3].
Their idea is to come up with all future challenges duringupednd store pre-computed answers as metadata (at
the client, or at the server in an authenticated and enalyptenner). Because of this approach, the number of
updates and challenges a client can perform is limited ard fixpriori. Also, one cannot perform block insertions
anywhere (only append-type insertions are possible) hEurtore, each update requires re-creating all the rengainin
challenges, which is problematic for large files. Under ¢hlmitations (otherwise the lower bound of [16] would
have been violated), they provide a protocol with optimaingstotic complexityO(1) in all complexity measures
giving the same probabilistic guarantees as our schemdyltheir work is in the random oracle model whereas our
scheme is provably secure in the standard model (see Tabtefdlifcomparison). A more detailed comparison with
variants [54, 55] developed after our DPDP constructiométuided in Section 7.2.

Several other related works deserve to be cited even thdwayhatre focused on distributing the storage to more
than a single server [9, 14], or cloud architecture [27],liewerifiability via third parties [48, 53] or data recover-
ability [4].

Our work is also closely related tnemory checking for which lower bounds are presented in [16, 39]. Specif-
ically, in [16] it is proved that all non-adaptive and detémistic checkers have read and write query complex-
ity summing up to2(logn/loglogn) (necessary for sublinear client storage), justifying th@ogn) cost in our

scheme. Note that for schemes based on cryptographic lgasimf2(log n) lower bound on the proof size has been
shown [13, 52]. Related bounds for other primitives haventsd®mwn by Blum et al. [7].

Recently, there were some interestilgnamic POR constructions. Iris [50] is based on the idea of aggregating
multiple updates from multiple clients and sending one Ibafodate to the server. The aggregation is performed
by a trustedportal, and the performance is amortized. PORAM [10], on the otlardh employs oblivious RAM
techniques to hide the information about which blocks aiaghapdated from the server. Since the server does not
get to observe which blocks are inter-related through thmding, he cannot corrupt such an inter-related set to
effectively corrupt an original block. Moreover, they usasure codes independently for each block, and thus keep
the construction efficient. Similar, more efficient, teajugs have also emerged [49, 11].

Also recently, two other works have improved our versiontaarsystem extension. First, Etemad and Kipcl
[20] realized that versions agppend-onlyand thus we may employ static PDP to keep the versions.,Giten and
Curtmola [12] presented an even more efficient verifiablsigercontrol system.

2 Model

We build on the PDP definitions from [2]. We begin by introchgcia general DPDP scheme and then show how the
original PDP model is consistent with this definition.

Definition 1 (DPDP Scheme)in a DPDP scheme, there are two parties. Tdhient wants to off-load her files to
the untrustedserver. A complete definition of a DPDP scheme should describe tlmviag (possibly randomized)
efficient procedures:

e KeyGen(1¥) — {sk, pk} is a probabilistic algorithm run by thelient. It takes as input a security parameter, and
outputs a secret kesk and a public keyk. The client stores the secret and public keys, and sendautbli fxey to
the server;

e PrepareUpdate(sk, pk, F',info, M.) — {e(F),e(info),e(M)} is an algorithm run by thelient to prepare (a part
of) the file for untrusted storage. As input, it takes secret public keys, (a part of) the fil& with the definition
info of the update to be performed (e.g., full re-write, modifyckl;, delete block, add a block after block, etc.),
and the previous metadat®/.. The output is an “encoded” version of (a part of) the fleF") (e.g., by adding
randomness, adding sentinels, encrypting for confidetytiadtc.), along with the information(info) about the
update (changed to fit the encoded version), and the new atated/). The client sends(F’), e(info),e(M) to
the server;

o PerformUpdate(pk, F;_1, M;_1,e(F),e(info),e(M)) — {F;, M;, M/, Py} is an algorithm run by theserver
in response to an update request from the client. The inpotagas the public keyk, the previous version
of the file F;_,, the metadatal/;_; and the client-provided values F'),e(info),e(M). Note that the values
e(F),e(info),e(M) are the values produced IRrepareUpdate. The output is the new version of the fileand the
metadatal/;, along with the metadata to be sent to the cligfitand its proofP,,,. The server send&f/, P); to
the client;

/.
c

o VerifyUpdate(sk, pk, F, info, M., M/, Pr;;) — {accept, reject} is run by theclient to verify the server’s behavior
during the update. It takes all inputs of tieepareUpdate algorithm} plus the M, Py sent by the server. It
outputs acceptance(can be deleted in that case) or rejection signals;

e Challenge(sk, pk, M.) — {c} is a probabilistic procedure run by theient to create a challenge for the server. It
takes the secret and public keys, along with the latesttoffertadatal/, as input, and outputs a challengdhat is
then sent to the server;

e Prove(pk, F;, M;,c) — {P} is the procedure run by theerver upon receipt of a challenge from the client. It takes
as input the public key, the latest version of the file and te&adata, and the challenge It outputs a proofP that
is sent to the client;

THowever, in our modeF denotes part of some encoded version of the file and not péreafctual data (though for generality purposes
we do not make it explicit).

o Verify(sk, pk, M., c, P) — {accept, reject} is the procedure run by theient upon receipt of the proaP from the
server. It takes as input the secret and public keys, thatclietadatall., the challenge:, and the proofP sent
by the server. An output of accept ideally means that theesestill has the file intact. We will define the security
requirements of a DPDP scheme later.

We assume there is a hidden input and outgigintstatein all functions run by the client, angerverstatein
all functions run by the server. Some inputs and outputs neagrbpty in some schemes. For example, the PDP
scheme of [2] does not store any metadata at the client sidso sk, pk can be used for storing multiple files,
possibly on different servers. All these functions can muased to take some public parameters as an extra input
if operating in the public parameters model, although ourstmiction does not require such modifications. Apart
from {accept, reject }, algorithmVerifyUpdate can also output a new client metadatfa. In most scenarios, this new
metadata will be set all. = M.

Retrieval of a (part of a) file is similar to the challengepesse protocol above, composed of
Challenge, Verify, Prove algorithms, except that along with the proof, the serveo alsnds the requested (part of
the) file, and the verification algorithm must use this (péurthe) file in the verification process. We also note that
a PDP scheme is consistent with the DPDP scheme definitidh,algorithmsPrepareUpdate, PerformUpdate and
VerifyUpdate specifying an update that is a full re-write (or append).

As stated above, PDP is a restricted case of DPDP. The PDReatig2] has the same algorithm definition for
key generation, defines a restricted versiorPafpareUpdate that can create the metadata for only one block at a
time, and define®rove and Verify algorithms similar to our definition. It lacks an explicitfagtion of Challenge
(though one is very easy to infefferformUpdate consists of performing a full re-write or an append (so thatay
attacks can be avoided), aNdrifyUpdate is used accordingly, i.e., it always accepts in case of aédlirite or it is
run as in DPDP in case of an append. Itis clear that our defimétilows a broad range of DPDP (and PDP) schemes.

We now define the security of a DPDP scheme, inspired by tharisedefinitions of [2, 15]. Note that the
restriction to the PDP scheme gives a security definitiolPIdP schemes compatible with the ones in [2, 3].

Definition 2 (Security of DPDP) We say that a DPDP scheme is secure if for any probabilistigrpmnial time
(PPT) adversary who can win the following data possessianggaith non-negligible probability, there exists an
extractor that can extract (at least) the challenged paftthe file by resetting and challenging the adversary polyno-
mially many times.

DATA POSSESSIONGAME: Played between the challenger who plays the role of thectiad the adversary who
acts as a server.

1. KEYGEN: The challenger run&eyGen(1*) — {sk, pk} and sends the public kex to the adversary;

2. ACF QuUERIES The adversary is very powerful. The adversary can mounptiga chosen file (ACF) queries
as follows. The adversary specifies a mesdagad the related informatioimfo specifying what kind of update
to perform (see Definition 1) and sends these to the chaliefigee challenger run®repareUpdate on these
inputs and sends the resultirgF'), e(info), e(M) to the adversary. Then the adversary replies whtfy Py,
which are verified by the challenger using the algoritherifyUpdate. The result of the verification is told to
the adversary. The adversary can further request challgengsurn proofs, and be told about the verification
results. The adversary can repeat the interaction definedalpolynomially-many times;

3. SETUP: Finally, the adversary decides on messagé&sand related informatiorinfo; for all i = 1,..., R
of adversary’s choice of polynomially-large (in the setugparameterk) R > 1. The ACF interaction is
performed again, with the firdnfo] specifying a full re-write (this corresponds to the first ¢irthe client
sends a file to the server). The challenger updates his loeshaata only for the verifying updates (hence,
non-verifying updates are considered not to have takenepteatata has not changed);

4. CHALLENGE: Call the final version of the file&, which is created according to the verifying updates the
adversary requested in the previous step. The challenddsltloe latest metadat#/,. sent by the adversary and
verified as accepting. Now the challenger creates a chaflersing the algorithn€hallenge(sk, pk, M.) — {c}
and sends it to the adversary. The adversary returns a pfooff Verify(sk, pk, M., ¢, P) accepts, then the
adversary wins. The challenger has the ability to reset tieessary to the beginning of the challenge phase
and repeat this step polynomially-many times for the puspafsextraction. Overall, the goal is to extract (at
least) the challenged parts @f from the adversary’s responses which are accepting.

5

Definition 3 (Alternative Security Definition for DPDP) A DPDP scheme is secure if for any PHTadversary
who can win the data possession game with non-negligiblbgtitity on f-fraction of blocks, there exists a PP

extractor algorithm that can extragt-fraction of blocks of the file with high probability by retiety and challenging
the adversary polynomially many times.

Theorem 1 Definitions 2 and 3 are equivalent.

Proof: The f-extractor employs the extractor (in Definition 2) on subswtall f-fraction of the blocks each time,
until all those blocks are extracted. If tifeadversary succeeds with non-negligible probability ars#f -fraction

of the blocks, then extractor will succeed in extractingsaib of these. For the other direction, as long as the number
of challenged blocks is less than or equalfte n, then the extractor can employ tiieextractor for the purposes of
extraction. O

Remark 1 1/n < f <1, since the adversary must corrupt at least one block to ktsaccessfully.

Remark 2 If f < 1 then the extractor cannot extract the whole file. In this ¢#ise DPDP scheme should catch the
adversary with some probability. This “probability of detion” will be discussed later.

Note that our definition coincides with extractor definisdn proofs of knowledgeFor an adversary that answers
a non-negligible fraction of the challenges, a polynoniiale extractor must exist. Furthermore, this definition lban
applied to the POR case [15, 24, 47], in which by repeatingtiaienge-response process, the extractor can extract
the whole file with the help of error-correcting codes. Thebaility of catching a cheating server is analyzed in
Section A.

Finally, if a DPDP scheme is to be truly publicly verifiableeWerify algorithm should not make use of the secret
key. Since that is the case for our construction (see Sed}ione can derive a public verifiability protocol usable for
official arbitration purposes; as explained by Kip¢ii][31

3 Rank-based authenticated skip lists

In order to implement our first DPDP construction, we use aifireaiversion of the authenticated skip list data
structure [23]. This new data structure, which we cathiak-based authenticated skip liss based on authenticated
skip lists but indexes data in a different way. Note that weald@ddave based the construction on any authenticated
search data structure, e.g., Merkle tree [35] instead. Whidd perfectly work for the static case. But in the dynamic
case, we would need an authenticated red-black tree, andwmdtely no algorithms have been previously presented
for rebalancing a Merkle tree while efficiently maintainiagd updating authentication information (except for the
three-party model, e.g., [32]). Yet, such algorithms hagerbextensively studied for the case of the authenticated
skip list data structure [41]. Before presenting the nevad#tucture, we briefly introduce authenticated skip lists.

The authenticated skip list is a skip list [43] (see Figuravith the difference that every nodeabove the bottom
level (which has two pointers, namelgt(v) anddwn(v)) also stores a labef(v) that is a cryptographic hash and
is computed using some collision-resistant hash fundti¢a.g., SHA-1 in practice) as a function ¢frgt(v)) and
f(dwn(v)). Using this data structure, one can answer queries likes‘@iebelong to the set represented with this
skip list?” and also provide a proof that the given answebpisact. To be able to verify the proofs to these answers,
the client must always hold the labg(s) of the top leftmost node of the skip list (node in Figure 1). We call
f(s) the basis(or root), and it corresponds to the client’s metadata in our DPDRtroation (M. = f(s)). In our
construction, the leaves of the skip list represent thekslat the file. When the client asks for a block, the server
needs to send that block, along with a proof that the blochtéact.

We can use an authenticated skip list to check the integrityedfile blocks. However, this data structure does not
support efficient verification of the indices of the blocksiieh are used as query and update parameters in our DPDP
scenario. The updates we want to support in our DPDP sceamgitnsertions of a new block after ti¢h block
and deletion or modification of thieth block (there is no search key in our case, in contrast3f [2hich basically
implements an authenticated dictionary). If we use indafdsocks as search keys in an authenticated dictionary, we
have the following problem. Suppose we have a file consistfri)0 blocksmy, mo, . .., m19o and we want to insert
a block after thel0-th block. This means that the indices of all the blogksg , m4o, . . . , m1gp Should be incremented,
and therefore an update becomes extremely inefficient. &@xrowme this difficulty, we define a new hashing scheme
that takes into account rank information.

=
j
_L
ol
1
=[N
—
_]
]
]
]
]
[_|
]

£ Ve Vs

Figure 1: Example of rank-based skip list.

3.1 Authenticating ranks

Let F' be a file consisting ofi blocks my,mo,...,m,. We store at thé-th bottom-level node of the skip list a
representatiory (m;) of block m; (we will define7 (m;) later). Blockm; will be stored elsewhere by the untrusted
server. Each node of the skip list stores the number of nodes at the bottom lihadl can be reached from We
call this value theank of v and denote it withr(v). In Figure 1, we show the ranks of the nodes of a skip list. An
insertion, deletion, or modification of a file block affectsiypthe nodes of the skip list along a search path. We can
recompute bottom-up the ranks of the affected nodes in aohtime per node.

The top leftmost node of a skip list will be referred to as skert node For exampleywsy is the start node of the
skip list in Figure 1. For a node, denote withlow(v) andhigh(v) the indices of the leftmost and rightmost nodes
at the bottom level reachable from respectively. Clearly, for the start nodeof the skip list, we have(s) = n,
low(s) = 1 andhigh(s) = n be the nodes that can be reached fromoy following the right or the down pointer
respectively. Using the ranks stored at the nodes, we cah thai-th node of the bottom level by traversing a path
that begins at the start node, as follows. For the curreng¢ npdssume we knowww(v) andhigh(v). Letw = rgt(v)
andz = dwn(v). We set

high(w) = high(v),

low(w) = high(v) —r(w)+1,
high(z) = low(v) +7r(z)—1,
low(z) = low(v).

If i € [low(w), high(w)], we follow the right pointer and set= w, else we follow the down pointer and set= .
We continue until we reach theth bottom node. Note that we do not have to stagh andlow. We compute them
on the fly using the ranks.

In order to authenticate skip lists with ranks, we extendhtaighing scheme defined in [23]. We consider a skip
list that stores data items at the bottom-level nodes. Irapplication, the node associated with théth block m;
stores itemx(v) = T(m;). Letl(v) be the level (height) of node in the skip list {((v) = 0 for the nodes at the
bottom level).

Let || denote concatenation. We extend a hash fungtitmsupport multiple arguments by defining

h(@y, ... wk) = h(h(z)]]. . . |[h(zk)) -
We are now ready to define our new hashing scheme:

Definition 4 (Hashing scheme with ranks) Given a collision resistant hash functidn the labelf (v) of a nodev of
a rank-based authenticated skip list is defined as follows.
Case 0: v = null

Casel: I(v) >0
f(w) = h(l(v),r(v), f(dwn(v)), f(rgt(v)));
Case2: l(v) =0
f) = h(l(v),r(v),z(v), f(rgt(v)))-
Before inserting any block (i.e. if initially the skip listag empty), the basis, i.e., the lakfgk) of the top leftmost

nodes of the skip list, can easily be computed by hashing the seini@mues of the skip list; —the file consists of
only two “fictitious” blocks— block0 and block+-oc.

node v

V3 V4 Vs ws w4y Ws We w7t
I(v) | O 0 0 2 2 3 3 4
qwv) |0 1 1 1 1 5 1 1
9(v) | O [T (ma) | T(ms) | FCvn) | F(we) | J(or) | F(vs) | S (vg)

Table 2: Proof for thé-th block of the fileF’ stored in the skip list of Figure 1.

3.2 Queries

Suppose now the filé¢" and a skip list on the file have been stored at the untrustegrsérhe client wants to verify
the integrity of blocki and therefore issues quertRank(7) to the server. The server executes Algorithm 1, described
below, to computé (i) and a proof for7 (i) (for convenience we usg (i) to denote7 (m;)).

Let vg,...,v; be the path from the start node,, to the node associated with blo¢kv;. The reverse path
v1, ..., v is called theverification pathof block i. For each node;, j = 1,...,k, we define boolead(v;) and
valuesg(v;) andg(v;) as follows, where we conventionally s€hull) = 0:

9

d(v;) = rgt j=1orj>1andv;_; = rgt(v;)
! dwn j > 1landv;_; = dwn(v;)

rlrgt(oy)) G =1
(0)) 1 if 7 >1andi(v;) =0
T = Y rdwn(vy)) it § > 1, 1(0;) > 0 andd(v;) = rgt
r(rgt(v;)) if j > 1,1(v;) > 0andd(v;) = dwn
flrgt(vy)) ifj=1
() z(vj) if 7 >1andi(v;) =0
REZ fawn(vy)) if § > 1,1(v;) > 0 andd(v;) = rgt
fret(v;)) if j > 1,1(v;) > 0 andd(v;) = dwn

The proof for block: with data 7 (i) is the sequencdl(i) = (A(v1),...,A(vg)) where A(v) =
(I(v),q(v),d(v),g(v)). So the proof consists of tuples associated with the nodéiseoferification path. Boolean
d(v) indicates whether the previous node is to the right or belowor nodes above the bottom leve{y) andg(v)
are the rank and label of the successor tifat is not on the path. The proff(5) for the skip list of Figure 1 is shown
in Table 2. Due to the properties of skip lists, a proof haseetgu size) (log n) with high probability (whp).

Algorithm 1: (7,1I) = atRank(:)
1: Letwy, s, ..., v, be the verification path for block
2: return representatioff” of block: and proofll = (A(vy), A(v2),. .., A(vg)) for T;

Algorithm 2 {accept, reject} = verify (i, M., T, 1I)
1: LetIl = (Ay,..., Ag), whered; = (l;,q;,d;,9;)forj=1,...
22 X =0;p0=17%="T;&=0;
3 forj=1,...,kdo

4 N =lyipj = pi-1+ s 65 = dj;
5. if 6; =rgtthen

6: v =h(N -1, 95);

7 § =&-1;

8 else{d; = dwn}

9 v =~ ps g5 Vi-1);
10: § =&-1+ 5

11: endif

12: end for

13: if ~y, # M, then

14: return reject;

15: else if pp — &k # 4 then

16: return reject;

17: else{y, = M. andp; — & =i}
18: return accept;

19: end if

3.3 \Verification

After receiving from the server the representatioof block i and a proofl for it, the client executes Algorithm 2 to
verify the proof using the stored metadata.

Algorithm 2 iteratively computes tuplgs\;, p;, d;, ;) for each node; on the verification path plus a sequence
of integers¢;. If the returned block representatign and proofll are correct, at each iteration of the for-loop, the
algorithm computes the following values associated with@ew; of the verification path:

e integer); = [(v;), i.e., the level ofv;;

integerp; = r(v;), i.e., the rank ob;;

booleand;, which indicates whether the previous nade; is to the right or below;;

hash valuey; = f(v;), i.e., the label ob;;

integer¢;, which is equal to the sum of the ranks of all the nodes thataatiee right of the nodes of the path
seen so far, but are not on the path.

Lemma 1 If T is the correct representation of blo¢land sequenc# of lengthk is the correct proof fof7, then the
following properties hold for the values computed in itevatk of the for-loop of Algorithm 2:

1. Valuepy is equal to the number of nodes at the bottom level of the stig.k., the numben of blocks of the
file;

2. Valueg, is equal ton — ¢; and

3. Valuey, is equal to the label of the start node of the skip list.

nodev || vy V3 Uy Vs w w3 Wy ws we wy
l(v) 0 0 0 0 1 2 2 3 3 4
r(v) 1 1 2 3 4 5 6 11 12 13
f) [T | T(ms) | T(ma) | T(ms) | f(vz) | f(v1) | flve) | fv7) | flvs) | f(ve)

Table 3: The proofI’(5) as produced by Algorithm 4 for the update “insert a new blodk wata7 after block 5 at
level 1”.

3.4 Updates

The possible updates in our DPDP scheme are insertions aof dloek after a given block, deletion of a block,
and modification of a block

To perform an update, the client issues first quesfank(z) (for an insertion or modification) artRank(i — 1)
(for a deletion), which returns the representatibrof block : or i — 1 and its prooflI’. Also, for an insertion, the
client decides the height of the tower of the skip list assed with the new block. Next, the client verifies proof
IT" and computes what would be the label of the start node of tipelisk after the update, using a variation of the
technique of [41]. Finally, the client asks the server tdqren the update on the skip list by sending to the server the
parameters of the update (for an insertion, the parameteligdie the tower height).

We outline in Algorithm 3 the update algorithm performed bg terver gerformUpdate) and in Algorithm 4 the
update algorithm performed by the client{Update). Input parameterg”’ andIl’ of verUpdate are provided by the
server, as computed IpgerformUpdate.

Since updates affect only nodes along a verification paéfsetfalgorithms run in expectét{log n) time whp and
the expected size of the proof returneddeyformUpdate is O(log n) whp.

Algorithm 3: (77,1I') = performUpdate(i, T, upd)
1: if upd is a deletiorthen
2: set(7/,1I;) = atRank(i) and(7;_,,II;_;) = atRank(i — 1);
3 set7T' =T7/UT.,andll! =1I; UII_;;
4: else{upd is an insertion or madificatign
5. set(7’,II') = atRank(3);
6: end if
7
8
9

. if upd is an insertiorthen
. insert elemen® in the skip after the-th element;
. else ifupd is a modificatiorthen
10: replace with7 thei-th element of the skip list;
11: else{upd is a deletion
12: delete the-th element of the skip list;
13: end if
14: update the labels, levels and ranks of the affected nodes;
15: return (77,11');

Algorithm 4:
{accept, reject} = verUpdate(i, M., T, upd, 7', 1T')

1: if upd is a deletiorthen
2: split7” into 7 and7;" ;. Also splitIl’ into IT; andII/_,;
3. setdecision = verify(i, M., T, 11;) A verify(i — 1, M., T, 1, ITI,_,);
4: else{upd is an insertion or modificatign
5. setdecision = verify(i, M., 7', 1I');
6
7
8
9

: end if
. if decision = reject then
return reject;
. else{decision = accept}
10: from4, 7, 7', andIl’, compute and store the updated labg]l of the start node;
11: return accept;
12: end if

To give some intuition of how Algorithm 4 produces prddf(i), the reader can verify that Table 3 corresponds
to IT'(5), the proof that the client produces from Table 2 in order tafy¢he update “insert a new block with dafa
after block 5 at level 1 of the skip list of Figure 1”. This upel@auses the creation of two new nodes in the skip list,
namely the node that holds the data for the 6-th blegkand nodew (5-th line of Table 3) that needs to be inserted
in the skip list at level 1. Note thagt(vs) = L(0]|1]|7,0]|1||7 (data(v))) is computed as defined in Definition 4 and
that the ranks along the search path are increased due tddhiea of one more block.

10

4 DPDP scheme construction

In this section, we present our DPDP | construction. Firstdescribe our algorithms for the procedures introduced in
Definition 1. Next, we develop compact representativesteriiocks to improve efficiency (blockless verification).
In the following,n is the current number of blocks of the file. The logarithmiengtexity for most of the operations
are due to well-known results about authenticated skip [&2, 42]. Most of the material of this section also applies
to the DPDP Il scheme presented in Section 7.1.

4.1 Core construction

The server maintains the file and the metadata, consistiag afithenticated skip list with ranks storing the blocks.
Thus, in this preliminary construction, we hawéb) = b for each block. The client keeps a single hash value, called
basis which is the label of the start node of the skip list. We innpéant the DPDP algorithms as follows.

KeyGen(1¥) — {sk,pk}: Our scheme does not require any keys to be generated. S@rtitedure’s output is
empty, and hence none of the other procedures make use efkbes,

PrepareUpdate(sk, pk, F',info, M.) — {e(F),e(info),e(M)}: This is a dummy procedure that outputs the file
and informationinfo it receives as input)/,. ande(M) are empty (not used);

PerformUpdate(pk, F;_1, M;_1,e(F),e(info),e(M)) — {F;, M;, M, Py }: Inputs F;_1, M;_; are the previ-
ously stored file and metadata on the server (empty if thisaditst run).e(F'), e(info), e(M), which are output
by PrepareUpdate, are sent by the client()/) being empty). The procedure updates the file accordirgiido),
outputting F;, runs the skip list update procedure on the previous skipjs ; (or builds the skip list from scratch
if this is the first run), outputs the resulting skip list &%, the new basis a&f/, and the proof returned by the skip
list update asPy;,. This corresponds to calling Algorithm 3 on inputs a blocteér j, the new datg™ (in case of
an insertion or a modification) and the type of the updaie (all this information is included ir(info)). Note that
the index;j and the type of the updatebd is taken frome(info) and the new datd is e(F'). Finally, Algorithm 3
outputsM and Py, = II(j), which are output byerformUpdate. The expected runtime @ (log n) whp;

VerifyUpdate(sk, pk, F, info, M., M/, Py:) — {accept, reject}: Client metadatal/. is the label of the start node
of the previous skip list (empty for the first time), wherdd$sis empty. The client runs Algorithm 4 using the index
j of the update)/, previous datd, the update typepd, the new datg”’ of the update and the prodf,;, sent by
the server as input (most of the inputs are includeifo). If the procedure accepts, the client skfs= M/ (new
and correct metadata has been computed). The client may elete dhe new block from its local storage. This
procedure is a direct call of Algorithm 4. It runs in expectigde O (log n) whp;

Challenge(sk, pk, M.) — {c}: This procedure does not need any input apart from knowiagitimber of blocks

in the file (z). It might additionally take a parametéfrwhich is the number of blocks to challenge. The procedure
createg” random block IDs betweeh ..., n. This set ofC random block IDs are sent to the server and is denoted
with ¢. The runtime iO(C);

Prove(pk, F;, M;,c) — {P}: This procedure uses the last version of the fileand the skip listA/;, and the
challengec sent by the client. It runs the skip list prover to create aopan the challenged blocks. Namely,
let i1,149,...,ic be the indices of the challenged block&rove calls Algorithm 1C times (with arguments
i1,12,...,ic) and sends baock' proofs. All theseC' proofs form the outpuP. The runtime i2D(C log n) whp;

Verify(sk, pk, M., c, P) — {accept, reject}: This function takes the last basM. the client has as input, the
challenger sent to the server, and the pra@freceived from the server. It then runs Algorithm 2 using asiia the
indices inc, the metadatd/,, the data/ and the proof sent by the server (note thfiaand the proof are contained
in P). This outputs a new basis. If this basis match&shen the client accepts. Since this is performed for all the
indices inc, this procedure takeS(C'log n) expected time whp.

The above construction requires the client to downloachallchallenged blocks for the verification. A more efficient
method for representing blocks is discussed in the nexiosect

11

4.2 Blockless verification

We can improve the efficiency of the core construction by eyip homomorphic tags, as in [2]. However, the tags
described here are simpler and more efficient to computee that it is possible to use other homomorphic tags like
BLS signatures [8] as in Compact POR [47].

We represent a block with its tag 7 (b). Tags are small in size compared to data blocks, which pesvido
main advantages. First, the skip list can be kept in memoegofd, instead of downloading the blocks, the client
can just download the tags. The integrity of the tags thevasdb protected by the skip list, while the tags protect the
integrity of the blocks.

In order to use tags, we modify oeyGen algorithm to outpupk = (N, g), whereN = pq is a product of two
primes andy is an element of high order i#i},. The public keypk is sent to the server; there is no secret key.

The tag7 (b) of a blockb is defined by

T(b) =g" mod N.

The skip list now stores the tags of the blocks at the bottwallnodes. Therefore, the proofs provided by the
server certify the tags instead of the blocks themselvese Nhat instead of storing the tags explicitly, the server ca
alternatively compute them as needed from the public keytlzatblocks.

The Prove procedure computes a proof for the tags of the challengezk®to,;; (1 < iy,...,ic < n denote the
challenged indices, wher@ is the number of challenged blocks amds the total number of blocks). The server also
sends a combined blodkl = ch:l ajm;,, wherea; are random values sent by the client as part of the challenge.
The size of this combined block is roughly the size of a sidmtek. Thus, we have a much smaller overhead than
for sendingC' blocks. Also, theVerify algorithm computes the value

C
T = H T (mi;)*™ mod N,
j=1

and accepts if” = ¢™ mod N and the skip list proof verifies.

The Challenge procedure can also be made more efficient by using the ide]. irFirst, instead of sending
random values; separately, the client can simply send a random key to a pseutiom function that will generate
those values. Second, a key to a pseudo-random permutatidmecsent to select the indices of the challenged blocks
1 <i; <n(=1,...,C). The definitions of these pseudo-random families can benpaitthe public key. See
[2] for more details on this challenge procedure. We can nothine our main result (for the proof of security see
Section A):

Theorem 2 Assume the existence of a collision-resistant hash fumetim that the factoring assumption holds. The
dynamic provable data possession scheme presented irethiers (DPDP) has the following properties, where

is the current number of blocks of the fijejs the fraction of tampered blocks, anti= O(1) is the number of blocks
challenged in a query:

1. The scheme is secure according to Definition 2;

2. The probability of detecting a tampered block is (1 — f)¢;

3. The expected update timeiglog) at both the server and the client whp;
4

. The expected query time at the server, the expected a#idfidime at the client and the expected communica-
tion complexity are eact(log n) whp;

5. The client space i©(1) and the expected server spacé&ig:) whp.

Note that the above results hold in expectation and with pigibability due to the properties of skip lists [43].
Intuition for the Proof. Before looking at our full proof below, we present the irituit for our proof.
(1) Our challenger will have two sub-entities: Amtractorwho extracts the challenged blocks from the adver-
sary’s proof, and aeductorwho breaks the collision-resistance of the hash functidaaprsV, if the extractor fails
to extract the original blocks. As the only difference frohe treal game, the challenger provides the reductor the

12

blocks (together with their ids) whose update proofs havédigd, so that the reductor can keep them in its storage.

Note thatthe extractor does not know the original blocksly the reductor does. Also note that the reductor keeps

updating the blocks in its storage when the adversary padarpdates. Therefore, the reductor always keeps the
latest version of each block. This difference is invisildghe adversary, and so he will behave in the same way as he
would to an honest client.

(2) Consider the case where the version of our DPDP scherheutithe tags is used (hence blockless-verification
is not possible). At the end of the security game, the adwers#l reply to the challenge sent by the challenger. The
extractor just outputs the block(s) contained in the prawft by the adversary. If this proof verifies, and hence the
adversary wins, it must be the case that either all the blacksntact (and so the extractor succeeded in outputting
the original blocks) or otherwise the reductor breaks siglii-resistance since now the original block together with
the extracted block constitute a collision, failing Lemma 2

(3) Now we can consider the blockless-verification versibous DPDP construction. But, for simplicity, assume
that only one block is challenged. Call the block sent in ttempby the adversary, and the original challenged block
stored at the reducton. The extractor just outputs If the extractor succeeds in extracting the correct blogk (

b = m), then we are done. Now suppose the extractor fails, whichnste# m. Now, if ¢® = ¢™ mod N, then

the reductor breaks the factoring assumption, since themste= m mod ¢(N) , which mean®d — m = k¢(N)

for some integek # 0 (since the extractor failed to extract the original blockence,I. = b — m can be used in
Miller's Lemma [36], which leads to factoringy. Otherwiseg® # ¢™ mod N. This means, there are two different
tags that can provide a verifying skip list proof. By Lemmat® reductor can break the collision-resistance of the
hash function by outputtingg® mod N) and(¢g™ mod N).

Finally, we extend our simpler proofs above to a proof of tilesfcheme with multiple challenges (see Appendix).
The overall idea will be the same, and the way we will addreshkiphe challenges will be by (i) solving a system of
linear equations as in the extractor at the last paragragtegdroof of Theorem 4.3 in [2], and (i) finding a subset of
items that will work exactly as in case (3) above.

4.3 Generic Construction

At this point, we observe two main points that efficient DP@Astructions should have:

1. For efficient proofs (i.e. blockless verification), the[DPscheme should use homomorphic tags over the data.
The homomorphism property was previously formalized bynddse et al. [5], and thus we do not want to
repeat the formalization here. Instead, we would like totioearpossible alternative approaches and an intuitive
discussion below.

2. For dynamism of data, the DPDP protocol should employ a daticture with efficient membership queries
(i.e. an authenticated data structure). We will discussiptesalternative data structures below.

Thus, we can say that in general, a DPDP scheme does theiftglof®) Considers the data as composed of some
number of chunks (e.g., as a single wholendrslocks). (2) Creates homomorphic tags over the chunks. & &
data structure on top of the tags.

When a challenge comes, the server does the following: @at€s the combined chunk in a way that will match
the homomorphic property of the tags. (2) Creates memhesbiofs using the data structure proving that the tags
of the challenged blocks are in the latest version of the skatecture. (3) Sends the combined chunk, together with
the data structure proofs (that include the tags) to thatctie the proof.

Alternatives for Homomorphic Tags:
As long as the tags have a homomorphism property, this casdabto combine the chunks into a single large chunk,
providing blockless verification It is possible that the tags include order information .(eRPP [2] tags contain a
hash of the block index in the tag), or the tags do not caretahewrder information (e.g., in our DPDP construction,
since rank-based authenticated skip list will handle tlelbindexing issues, tags are not related to block indices).
But, for a dynamic system to be efficient, it must be the caaettie tags do not contain order information, since
otherwise an update may cause all tags to be updated.

Tags may be related to the file as a whole, to blocks of the filly even smaller units (e.g., sectors in POR [24]).
As seen in our tests in Section 6, the size of the unit in a tatensefor performance, and should be optimized.

13

Furthermore, as long as the homomorphic property is thed#-Based tags, or BLS-signature-based tags may
be used, along with other alternatives. If a prime-ordeupris used for computing tags, it must be remembered
that each unit (e.g., block) must be smaller than the ordénefiroup, since otherwise the server may just store the
equivalent value that is smaller than the group order atighass the verification. RSA-type groups where the order
is unknown do not have this issue.

Alternatives for Ordered Data Structure:

Rank-based authenticated skip list is a neat example ofderent and authenticated data structure that allows mem-
bership queries efficiently{(log n) whp wheren is the number of leaves, which corresponds to the numbepoksl

in the file). To the best of our knowledge, rank-based auttateid skip list is the first construction of an ordered au-
thenticated data structure that hagn performance. Later variants (although not fully detailedjude Merkle trees
(used in [54]) and range-based 2-3 trees [55]. The most itapbadvantage of a skip list over balanced trees is that
the authenticated version is much easier to implementowitthe complication of the authenticated rebalancing op-
erations. Since a skip list will haveg n height with high probability, the need for complex autheatitd balancing
operations to obtain guarante&g n performance is not well-justified. Recently, a variant of cank-based au-
thenticated skip list construction called FlexList is afsoposed, with improved efficiency, and the ability to handl
multiple challenges and updates at once [25, 18, 19].

Yet even more alternative authenticated data structudsde hash lists (i.e. an array of hash values of each
block), or simply a hash of the whole file (in general, we cdasithis as a value rather than a data structure because
of its simplicity). But, such structures do not provide affit DPDP. (1) If a single hash of the file is kept at the client,
even though this is very efficient in terms of client storag€1() and server storage (no extra tags or data structure
to keep), the updates are very inefficient. Even a singlegitamthe file would require recomputing the hash of the
whole file —an operation that is extremely slow for large filé2) If a hash list is used, the client will ne€a(n)
space to keep one hash per block, even though the servegesieraptimal as the first case. Modification of a block
will be anO(1) operation; just requiring the client to recompute the heshat block. Yet, an insertion into the file
may cause)(n) time.

5 Extensions and applications

Our DPDP scheme supports a variety of distributed data ortdsw applications where the data is subject to dynamic
updates. In this section, we describe extensions of ouc lzasieme that employ additional layers of rank-based
authenticated dictionaries to store hierarchical, apfitt-specific metadata for use in networked storage arsiorer
control.

5.1 Variable-sized blocks

We now show how we can augment our hashing scheme to supp@bleasized blocks (e.g., when we want to
update a byte of a certain block). Recall that our rankingsahassigns each internal nada rankr(u) equivalent

to the number of bottom-level nodes (data blocks) reachiabie the subtree rooted at these nodes (blocks) are
conventionally assigned a rank equalltoWe support variable-sized blocks by defining the rank of denat the
bottom level to be the size of its associated block (i.e. itegy Each internal node, in turn, is assigned a rank
equivalent to the amount of bytes reachable from it. Quenekproofs proceed the same as before, except that ranks
and intervals associated with the search path refer to dfdgets, not block indices, with updates phrased as, e.g.,
“insert m bytes at byte offset’. Such an update would require changing only the block doimtg the data at byte
indexi. Similarly, modifications and deletions affect only thosecks spanned by the range of bytes specified in the
update.

5.2 Directory hierarchies

We can also extend our DPDP scheme for use in storage systamsting of multiple files within a directory

hierarchy. The key idea is to place the start node of each fiwik-based authenticated structure (from our single-file
scheme) at the bottom node of a parent dictionary used to reapdines to files. Using key-based authenticated
dictionaries [41], we can chain our proofs and update ojmeratthrough the entire directory hierarchy, where each
directory is represented as an authenticated dictionanngtits files and subdirectories. Thus, we can use these

14

authenticated dictionaries in a nested manner, with thé stale of the topmost dictionary representing the root of
the file system (as depicted in Figure 2(a)).

This extension provides added flexibility for multi-usevgonments. Consider a system administrator who em-
ploys an untrusted storage provider. The administratokeap the authenticated structure’s metadata corresppndin
to the topmost directory, and use it to periodically chedk ititegrity of the whole file system. Each user can keep
the label of the start node of the dictionary correspondinigetr home directory, and use it to independently check the
integrity of her home file system at any time, without needcfmoperation from the administrator.

Since the start node of the authenticated structure of tleetdiry hierarchy is the bottom-level node of another
authenticated structure at a higher level in the hierangbger levels of the hierarchy must be updated with each epdat
to the lower levels. Still, the proof complexity stays ralaly low: For example, for the rank-based authenticatép sk
list case, ifn is the maximum number of leaves in each skip list and the depthe directory structure id, then
proofs on the whole file system have expeatsd log n) size and computation time whp.

Skiplist at level 0 ‘

Skiplist at level 1 ‘

T
lib/

Skiplist at level 1 ‘

Skiplist at level 0 ‘ \ net‘.c | [eypte]| | main.c | \‘htr‘nll | ext | oaa] README |
\ bi‘n/ | \ et‘c/ | - ‘ Skiplist at level 2 ‘ avg #ofentrie?p(er directory: f
‘ Skiplist at level 1 | ‘ ‘ Skiplist at level 1 ‘ \ mainG. | mainc2 |oas] mai‘r‘Lc,v \} avg # of versions per file: v
[fstab | | mtab | ‘pass:wd‘ \usérl/H usérz/H usér3/\---\ usérK/\ Skiplist at level 3 ‘ avg depth of directory

0

hierarchy: d
‘ Skiplist at level 2 ‘ @ e @
‘ ‘ ‘ Legend | Skiplist | (SAIIER ~— — Legend ‘
@ @ e @ root leaf avg # of blocks per file: n root leaf

(a) Afile system skip list with blocks as leaves, directodes files(b) A version control file system. Notice the additional leeé

as roots of nested skip lists. skiplists for holding versions of a file. To eliminate redandy at the
version level, persistent authenticated skip lists coeldsed [1]: the
complexity of these proofs will then l@(log n + logv + dlog f).

Figure 2: Applications of our DPDP system.

5.3 \Version control

We can build on our extensions further to efficiently supporérsioning system (e.g., a CVS repository, or versioning
filesystem). Such a system can be supported by adding araattigional layer of key-based authenticated dictionar-
ies [41], keyed by revision number, between the dictiorsslioe each file's directory and its data, chaining proofs as in
previous extensions. (See Figure 2(b) for an illustrajigss before, the client needs only to store the topmost basis;
thus we can support a versioning system for a single file willy ®(1) storage at the client an@(log n + log v)
proof complexity, where is the number of the file versions. For a versioning systemrspg multiple directories,

let v be the number of versions adde the depth of the directory hierarchy. The proof compjeicit the versioning

file system has expected sig€d(log n + log v)).

The server may implement its method of block storage indegetty from the dictionary structures used to au-
thenticate data; it does not need to physically duplicaté étock of data that appears in each new version. However,
as described, this extension requires the addition of a ael+bbased dictionary representing file data for each new
revision added (since this dictionary is placed at the |éafgh file’s version dictionary). In order to be more space-
efficient, we could us@ersistentauthenticated dictionaries [1] along with our rank meckami These structures
handle updates by adding some new nodes along the updateybdlthpreserving old internal nodes corresponding
to previous versions of the structure, thus avoiding unededplication of nodes.

6 Performance evaluation

We evaluate the performance of our DPDP | scheme (Sectignirti2rms of communication and computational
overhead, in order to determine thece of dynamisnover static PDP. For ease of comparison, our evaluation uses

15

Proof size (KB)

the same scenario as in PDP [2], where a server wishes to posgession of a 1GB file. As observed in [2], detecting
a 1% fraction of incorrect data with 99% confidence requires lelngiing a constant number of 460 blocks; we use
the same number of challenges for comparison.

T T T T T T T . T T — T T T —————

—— DPDP I (99%) —— Proof time: DPDP (99%)
—=— PDP (99%) —=— Proof time: PDP (99%)

1250 -

600
1000

400

500

250 4

Time to compute server proof (ms)

n 1 n 1 n 1 n 1 n 1 0 T l n n n n PR | n
(a) Size 8fbroofs of'PossessiBh on a 188 file, fdPB9% prolghib) Compatationfime refflired by the serfér in ré8ponse twak ¢
of detecting misbeh&ef size (KB) lenge for a 1GB file, Witkk99%dpFobability of detecting mishetor.

Figure 3: Price of Dynamism

6.1 Proof size

The expected size of proofs of possession for a 1GB file uriffereht block sizes is illustrated in Figure 3(a). Here,
a DPDP proof consists of responses to 460 authenticatediskigueries, combined with a single verification block
M = Ya;m;, which grows linearly with the block size. The size of thisdk M is the same as that used by the
PDP scheme in [2] and is thus represented by the line labeled PDP. The destagteveen this line and those for our
DPDP | scheme represents our communication overhead—ite qfrdynamism—which comes from the skip list
guery responses (illustrated in Table 2). Each respongmiosron average.5 log n rows, so the total size decreases
exponentially (but slowly) with increasing block size, piding near-constant overhead except at very small block
sizes.

6.2 Server computation

Next, we measure the computational overhead incurred bgeitver in answering challenges. Figure 3(b) presents the
results of these experiments (averaged from 5 trials), hwviere performed on an AMD Athlon X2 3800+ system with
2GHz CPU and 2GB of RAM. As above, we compute the time requisedur scheme for a 1GB file under varying
block sizes, providing 99% confidence. As shown, our peréoroe is dominated by computiny and increases
linearly with the block size; note that static PDP [2] mustoatompute this\/ in response to the challenge. Thus
the computational price of dynamism—time spent traversiregskip list and building proofs—while logarithmic in
the number of blocks, is extremely low in practice: even fa&GB file with a million blocks of size 1KB, computing
the proof for 460 challenged blocks (achieving 99% confidgmequires less than 40ms in total (as small as 13ms
with larger blocks). We found in other experiments that ewtien the server is not 1/O bound (i.e. when computing
M from memory) the computational cost was nearly the samee M@t any outsourced storage system proving the
knowledge of the challenged blocks must reach those blauks$reerefore pay the I/O cost, and therefore such a small
overhead for such a huge file is more than acceptable.

The experiments suggest the choice of block size that masisniotal communication cost and computation over-
head for a 1GB file: a block size of 16KB is best for 99% configdemesulting in a proof size of 415KB, and com-
putational overhead of 30ms. They also show that the pridyimmism is a small amount of overhead compared to
the existing PDP scheme.

In terms of a practical deployment serving multiple cliemiste that with 30ms per 460-block challenge, the
server throughput would be 33 clients per second using desamye machine (with properties similar to the one in

2The authors present multiple versions of their scheme. €hgian without the knowledge of exponent assumption andatheom oracle
actually sends thid/; other versions only compute it.

16

our tests). A 16-core server machine can serve more thanle®@st challenges per second. Considering the proof
size of 415 KB each, this would require the server to have ab@b Gbit/s upload bandwidth, which would be the
limiting factor in such a server deployment.

6.3 Version control

Finally, we evaluate an application that suits our schemiglty to efficiently handle and prove updates to versigned
hierarchical resources. Public CVS repositories offer efuldoenchmark to assess the performance of the version
control system we describe in Section 5. Using CVS repaegdor the Rsyné, Samba* and Tcl® projects, we
retrieved the sequence of updates from the RCS source offiadah each repository’s main branch. RCS updates
come in two types: “insent lines at linen” or “delete m lines starting at line:”. Note that other partially-dynamic
schemes (i.e. Scalable PDP [3]) cannot handle these typagdates. For this evaluation, we consider a scenario
where queries and proofs descend a search path throughchieed authenticated dictionaries corresponding (in
order) to the directory structure, history of versions fackefile, and finally to the source-controlled lines of eaah fil
We use variable-sized data blocks, but for simplicity, ass@a naive scheme where each line of a file is assigned its
own block; a smarter block-allocation scheme that colleotgiguous lines during updates would yield fewer blocks,
resulting in less overhead.

Rsync Samba Tcl
dates of activity| 1996-2007| 1996-2004| 1998-2008
of files 371 1538 1757
of commits| 11413 27534 24054
of updates| 159027 275254 367105
Total lines| 238052 589829 1212729
Total KBytes | 8331KB | 18525 KB | 44585 KB
Avg. # updates/commit 13.9 10 15.3
Avg. # commits/file 30.7 17.9 13.7
Avg. # entries/directory 12.8 7 19.8
Proof size, 99% 425 KB 395 KB 426 KB
Proof size percommit 13 KB 9KB 15 KB
Proof time per commit 1.2ms 0.9ms 1.3ms

Table 4: Authenticated CVS server characteristics.

Table 4 presents performance characteristics of threecpO®S repositories under our scheme; while we have
not implemented an authenticated CVS system, we reportetiversoverhead required for proofs of possession for
each repository. Here, “commits” refer to individual CVSckins, each of which establish a new version, adding a
new leaf to the version dictionary for that file; “updates’sdebe the number of inserts or deletes required for each
commit. Total statistics sum the number of lines (blocks) kifobytes required to store all inserted lines across all
versions, even after they have been removed from the filetby dletions.

We use these figures to evaluate the performance of a proaksggsion under the DPDP | scheme: as described
in Section 5, the cost of authenticating different versiohiles within a directory hierarchy requires time and space
complexity corresponding to the depth of the skip list hielng, and the width of each skip list encountered during
the Prove procedure.

As in the previous evaluation, “Proof size, 99%” in Table fere to the size of a response to 460 challenges over
an entire repository (all directories, files, and versiod)is figure shows that clients of an untrusted CVS server—
even those storing none of the versioned resources locabyrguery the server to prove possession of the repository
using just a small fraction (1% to 5%) of the bandwidth reedito download the entire repository. “Proof size and
time per commit refer to a proof sent by the server to prove that a single carfmmade up of, on average, about a
dozen updates) was performed successfully, represettintypical use case. These commit proofs are very small
(9KB to 15KB) and fast to compute (around 1ms), renderingntipeactical even though they are required for each
commit. Our experiments show that our DPDP scheme is effieieth practical for use in distributed applications.

*http://rsync.samba.org/
*http://cvs.samba.org/
Shttp:/www.tcl.tk/

17

7 Remarks

7.1 Rank-based RSA trees

We now describe how we can use ideas from [42] to implemerD#BP Il scheme (see Table 1), which has a higher
probability of detection, maintains logarithmic commuation complexity but has increased update time.

In [42], a dynamic authenticated data structure cdR&R treds presented that achieves constant expected query
time (i.e., time to construct the proof), constant prooesiandO(n° logn) expected amortized update time, for a
given0 < e < 1. We can add rank information to the RSA tree by explicitlyrisig ranks at the internal nodes. Using
this data structure allows the server to ans@élog n) challenges wittO (log n) communication cost since the proof
for a block tag ha®)(1) size.

The reason for sending additional challenges is the fatthiegprobabilityp of detection increases with number
C of challenges, sincg = 1 — (1 — f)%, wheref is the fraction of tampered blocks. Therefore, by using aARS
tree with ranks to implement DPDP, we obtain the same coriiplmeasures as DPDP |, except for the update time,
which increases fromd(log n) to O(n* log n) (expected amortized), and achieve an improved probabiliietection
equal tol — (1 — f)®?(ogn),

We now describe how we can use the tree structure from [42]gpat rank information. In [42], anis chosen
between 0 and 1 and a tree structui® built that hasO(1/¢) levels, each node having degrégn<). However,
there is no notion of order in [42]. To introduce a notion ofler we assume that the elements lie at the leaves of
the tree and we view it as a B-tree with lower bound on the @egre 3n°/4 and therefore upper bound equal to
2t = 3n°/2, which are both viewed as constants. Therefore we can userkBetree algorithms to do the updates
with the difference that we rebuild the tree whenever the memof the blocks of the file increases franto 2n or
decreases from to n/4. When we rebuild, we set the new constants for the degreeedfele. By the properties of
the B-tree (all leaves lie at the same level), we can proveitienot possible to change the number of the levels of
the tree before a new rebuilt takes place. To see that, sappodile initially consists ofi blocks. Suppose now, for
contradiction that the number of the levels of the tree charmpfore a new rebuilt takes place. Note that a new rebuilt
takes place when at lea&t /4 operations (insertions/deletions) take place. We distsigtwo cases:

1. If the number of the levels of the tree increases, that sidaat the numbeb of the added blocks is at least
nlt€ — n. Since there is no rebuilt it should be the case that 3n/4 and therefore that!tc — n < 3n/4,
which is a contradiction for large;

2. If the number of the levels of the tree decreases, that snthah the numbel of the deleted blocks is at least
n — n'~¢. Since there is no rebuilt it should be the case that 3n/4, and therefore that — n'=¢ < 3n/4,
which is again a contradiction for large

Therefore before a big change happens in the tree, we caitdréby using the same and by changing the node
degree) the tree and amortize. This is important, becagsBE8A tree structure works for trees that do not change
their depth during updates, since the constant proof cotitpleomes from the fact that the depth is not a function of
the elements in the structure (unlike B-trees), but is atwagintained to be a constant.

Using the above provably secure authenticated data steubased on [42] to secure the tags (where security is
based on thetrong RSA assumptiprwe obtain the following result:

Theorem 3 Assume the strong RSA assumption and the factoring assunmmmiid. The dynamic provable data
possession scheme presented in this section (DPDP 1) lea®llbwing properties, where is the current number of
blocks of the filef is the fraction of tampered blocks, aads a given constant such that< ¢ < 1:

1. The scheme is secure according to Definition 2;

2. The probability of detecting a tampered block is (1 — f)$(en);

3. The update time i®(n°logn) (expected amortized) at the server anl) (expected) at the client;
4

. The expected query time at the server, the expected aBdfidime at the client and the worst-case communi-
cation complexity are eadf (logn);

®The use of such a tree is dictated by the specific cryptogegpiinitive used.

18

5. The client space i©(1) and the server space (3(n).

Note that sendin@ (log n) challenges in [2, 3] or DPDP | would increase the commuracatiomplexity from
O(1) to O(log n) and fromO(log n) to O(log? n), respectively.

7.2 Other DPDP Constructions

Following ideas from [42], we can modify our scheme in Satfiol to implement DPDP Il and DPDP IV schemes
(see Table 5), which are optimized for challenge-intensivepdate-intensive workloads, respectively. Both DPDP ||
and DPDP IV schemes will achieve the same probability ofaligte as our DPDP | scheme. The reasons they are
presented as future work is that we have not analyzed tHairesfcy carefully, and hence the following table should
be taken only as a good guess of what will happen if ideas indlRbe incorporated to our DPDP scheme keeping
the same tags and the challenge structure.

| Scheme | DPDPIIl | DPDPIV |
Update time (server) O(n°) 0(1)
Challenge time (server) O(1) O(n°)
Client computation O(1) 0(1)
Communication O(1) O(1)
Model Standard Standard
Append blocks v v
Modify blocks v v
Insert blocks v v
Delete blocks v v
Prob. of detection 1-1-HC]1-@1-/5°

Table 5: Two new DPDP schemes that will incorporate tags aadfpechnigues described in this chapter, together
with ideas from [42]. As before, we denote withthe number of the blocks of the file, with the fraction of the
corrupted blocks, and with' being the number of challenged blocks (typically a consiaapendent of:). In all
constructions, the storage spac®id) at the client and)(n) at the server.

7.3 PORvs. PDP

One can generalize most secure cloud storage schemes ayRbD&-POR-type schemes. Both type of schemes are
introduced with the same purpose: Alice wants to store hter alaa server that may not necessarily be fully-trusted.
Alice would like to obtain a proof that her data is being kegct at the server side. The most-widely-accepted
definitions for POR-type schemes appear in Compact POR ptlifs.generalization [15]. We will use the definitions
in this paper for the PDP-type schemes.

Consider, as an example, Dropbox cloud storage system. Wiiansigns up for Dropbox, it creates a directory
on the client’s computer, with some demonstration filesd@sand immediately starts uploading those files. Thus,
by choosing these initial demonstration files, the advgrsan easily mount a chosen-file attack. Furthermore, with
program updates, the adversary may update these files dtuirsgf Alice’s computer to perform those updates on the
server. Therefore, we conclude thatataptive chosen-file attadkrmulation is necessary. Note that this formulation
is similar to achosen-plaintext attaakn an encryption scheme, and its history is full of justifizatfor adopting such
a definition.

After the adversary mounts this adaptive chosen-file attéodn the challenger interacts with the adversary
through the challenge-response protocol. There needsdao batractor, similar to the one in zero-knowledge proof
of knowledge (ZKPoK) systems, to make sure the server indlee@s the file intact. As in ZKPoK systems, the
extractor may rewind the adversary and re-challenge patyaity-many times.

Note that the initial POR-type definition [24] included theractor as part of the actual scheme, and required
the actual server to be stateless to ensure it works. Lateas realized that this is an unnecessary requirement, and
formulating an imaginary extractor as in the ZKPoK systessriough to ensure security [2, 47, 17]. Therefore, we
allow the extractor to rewind the adversary, instead of mésgl a stateless server. Obviously, we need the probability
that the extractor succeeds to be high.

19

We have seen that POR-type schemes provide very strongtgeguarantees byecessarilysacrificing perfor-
mance. On the other hand, PDP-type schemes can work well gedain scenarios. Below, we analyze various
scenarios:

e For commercial applications that do not require extrentédyr guarantees where the server may be semi-
trusted, PDP-type schemes may provide a sufficient guarakRta example, Alice may trust that Amazon will
not intentionally modify a single bit of her data, but Amazoay try to hide a system failure where a fraction
of her file is lost. In such a case, Amazon will be caught cheatising a PDP-type scheme.

e For the cases where the file itself is tolerant to minor madliitms, again PDP-type schemes may be sufficient.
For example, regular text files may be tolerant to change éwddtters, image, video or audio files may tolerate
a few glitches here and there.

e When employed as a business practice by companies whodatieps matter, there is a great incentive not
to get caught, even with a low probability. Consider Amazeaneple again. If Amazon gets caught cheating,
then the financial losses will be intolerable. Note that,fmdther hand, without any provable storage system
in use, Amazon is not necessarily afraid of corrupting usga,dsince there will be no proof.

e Moreover, the law of large numbers is a very important caméer secure cloud storage scenarios. Even though
the probability that a single user Alice catches Amazon thgas low, Amazon has too many users. The law
of large numbers tells us that some users will catch Amazeatihy. Besides, remember that the analysis
above represents a single challenge-response scenar@ality, Alice will challenge the server multiple times.
Again, the law of large numbers tells us that even a single Asge will catch Amazon cheating after multiple
challenge-response protocol executions.

The scenarios above are in line with ttevert adversaynodel for multi-party computation [6]. As argued by Aumann
and Lindell, this model represents realistic adversatiese who are afraid of legal penalties. Thus, we can say PDP-
type schemes work well in such a covert adversary setting ttaus we expect them to perform as necessary in real
scenarios.

In summary, if performance is the main concern, PDP-typerses should be employed, with the fact in mind
that a single challenge-response is not extremely bindingmultiple random challenges increase the probability of
catching dramatically. On the other hand, if immediate @sion is required and the data is highly-sensitive, then
POR-type schemes with built-in erasure- and error-rasistanust be employed. Note that, in both cases, if the server
corrupts all the data, there is no technical solution pdssdoretrieve back the original.

APPENDIX

A Security

In this section we prove the security of our DPDP scheme. &\thil proof refers specifically to the DPDP | scheme,
it also applies to the DPDP Il scheme discussed in the nexibsecindeed, the only difference between the two
schemes is the authenticated structure used for protetinigtegrity of the tags.

To prove security of our DPDP scheme, we need the followirsgimptions, definitions, facts and lemmas. We
begin with the following lemma, which follows from the twauty authenticated skip list construction (Theorem 1
of [41]) and our discussion in Section 3.

Lemma 2 Assuming the existence of a collision-resistant hash immcthe proofs generated using our rank-based
authenticated skip list guarantees the integrity of its/k=s (m;) with non-negligible probability.

Definition 5 (Factoring assumption) For all PPT adversariesd and large-enough numbeN = pq which is a
product of two prime® andgq, the probability thatd can outputp or ¢ givenN is negligible in the size gf andgq.

Definition 6 Euler’s ¢ function for N = pq wherep, ¢ are primes is defined ag(N) = (p — 1)(¢ — 1).

Definition 7 Carmichael) function for N = pq wherep, g are primes is defined ag V) = lcm(p — 1,¢ — 1) where
lcm(z,y) denotes the least common multipleraind y.

20

Fact1 A(N) | ¢(N).

Lemma 3 (Miller's Lemma [36]) Let L be a number divisible byx(/N). Then, there exists a PPT algorithm that
factors N with non-negligible probability, giveih and V.

Theorem 4 (Security of DPDP protocol) The DPDP protocol is secure in the standard model accordnBefini-
tion 2, assuming the existence of a collision-resistanhtaaction and that the factoring assumption holds.

Proof: The challenger is given a hash functibpand an integelN = pq but notp or ¢q. The challenger then samples a
high-order elemeny from Z7,. He interacts with the adversary in the data possession bamestly, using the given
hash function, and creates and updates the tags while Dsagthe modulus anglas the base.

Suppose now the challenger challengéblocks, namely the blocks with indiceés, io, . . . ,ic. We recall that in
response to each challenge, the proof contains:

1. Thetagd;,,T;,,. .., T;. for each block, iz, . . ., ic, along with the respective skip list proofs that correspond
to each tadl;,, Ti,, . . . , Tig;

2. A “weighted” sum of the formB = a;,b;, + a;,bi, + ... + ai.bi., Wherea;; (j = 1,...,C) are random
numbers known by the challenger.

According to Definition 2, the DPDP scheme is secure if, whkien#he verification succeeds with non-negligible
probabilty (i.e. the adversary wins the data possessiorepahe challenger can extract the actual blocks (which we
denote withm;,, m;,, ..., m;,) in polynomially-many interactions with the adversary.€litiea of the extraction is to
reset and challenge with independeptand get enough independent linear equations that veribesthne adversary
to solve for eachn;; (thus, the extractor is just an algebraic linear solver)thlnequation above fa8, we haveC
unknowns. Therefore, we can solve for individual bloeks if we getC verifying linearly independent equations
on the same blocks. Therefore, if the adversary can respoadnbn-negligible fraction of challenges, since the
extractor needs only polynomially-many (inde€g,equations, by rewinding polynomially-many times, theragtor
can extract the original blocks. Now suppose the challesbalienges the adversary for a polynomial number of
times and get§’ verifying responses. Then B, Bs, ..., B¢ are the weighted sums received each time, we have the
following equations:

By = ambil + ambiQ + ...+ ailcbic
By = Aoy bil + Aoy big + ...+ aigcbic
Bo = ai01bi1 + aiczbiz 4+ ...+ aiccbic
wherea;;,, a;;,, ..., ai;. for j =1,...,C are different sets of random numbers sent each time withithtenge
andb;, , b;,, ..., b;c are the blocks that the adversary claims to possess. Byngalliis system of linear equations
we extract the blocks;, , b;,, ..., bc. This constitutes the extractor’s output, and if they cspond to the original
blocksm;,, m,,, ..., m;c, then we are done. Otherwise, meaning there is at least orenatching block, we show

that the reductor can either break the factoring assumptidine collision-resistance of the hash function.

Suppose now there is a subset of challenged blgéks,, ..., br} C {b;,,bi,, ..., bic} such thab; # m; for
all j = 1,...,k (i.e. the extractor failed for those blocks). Let, ao,...,a; andTy,1s,..., T, be the random
numbers and the tags respectively that correspond to s@pense (i.e. to some linear equation of the system) for
blocks {1, b, ..., b }. The reductor first checks to see if there is any tag mismafch: ¢/ mod N, for some
1 < j < k. Ifthis is the case, the reductor can outgaindg™i mod N for that particularj as a collision, using
Lemma 2.

Further remember that, since the adversary’s proof verifir.t_mlhaveT:f1 TgQ TZaCC = g% mod N for all
B values above. The reductor now compulds= »_ a;;m;;, and assuming there is no tag mis-match (otherwise
we would have broken collision-resistance above), we krtmﬁ”@i” ...T;ZC = g%y TigMig T Fig Mig
mod N. This meansg? = g™ mod N. Now, if there is the subséby, b, .. ., by} of blocks that are different from
the original blocks (i.eB # M), thenB — M can be used to facta¥, by using Miller's Lemma [36].

Therefore, if the adversary can respond to a non-neglidibaletion of challenges, since the extractor needs only

polynomially-many equations, by rewinding polynomiathany times, the challenger can either extract the original

21

blocks (using the extractor), or break the collision-resise of the hash function used or the factoring assumption
(using the reductor) with non-negligible probability. $lioncludes the proof of Theorem 41

Concerning the probability of detection, the client prolieblocks by calling theChallenge procedure. Clearly,
if the server tampers with a block other than those probedséhnver will not be caught. Assume now that the server
tampers witht blocks. If the total number of blocks ig the probability that at least one of the probed blocks nestch
at least one of the tampered blockg is((n — t)/n)¢, since choosing’ of n—t non-tampered blocks has probability

((n—t)/n)".

Acknowledgments

A preliminary version of this work appeared in the 16th ACMn@&rence on Computer and Communications Security
(ACM CCS 2009) [17]. Work supported in part by the U.S. NagibBcience Foundation under grants CNS—-0627553,
CNS-1228485, 11S-0713403 and OCI-0724806, by a reseaftchagn NetApp, Inc., by the Center for Geometric
Computing and the Kanellakis Fellowship at Brown University TUBITAK, the Scientific and Technological Re-
search Council of Turkey, under project number 112E115psrieliropean Union COST Actions IC1306 and 1IC1206.
We thank Giuseppe Ateniese, Michael T. Goodrich, Anna Lyskaya, and Nikos Triandopoulos for many useful
discussions.

References

[1] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia.sBtant authenticated dictionaries and their appli-
cations. InProceedings of the 4th International Conference on InfdiamaSecurity ISC '01, pages 379-393,
London, UK, 2001. Springer-Verlag.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. KhanKissner, Z. Peterson, and D. Song. Remote data
checking using provable data possessi&&CM Transactions on Information and System Security (TGSE
14(1):12:1-12:34, June 2011.

[3] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. &able and efficient provable data possession. In
Proceedings of the 4th International Conference on Secwuitd Privacy in Communication NetowrkSe-
cureComm '08, pages 9:1-9:10, New York, NY, USA, 2008. ACM.

[4] G. Ateniese, M. T. Goodrich, V. Lekakis, C. PapamanthHewRaraskevas, and R. Tamassia. Accountable storage.
Cryptology ePrint Archive, Report 2014/886, 2014.

[5] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage fnomomorphic identification protocols. Int.
Conference on the Theory and Application of Cryptology arfdrmation Security (ASIACRYRages 319-
333, 2009.

[6] Y. Aumann and Y. Lindell. Security against covert adweaigs: Efficient protocols for realistic adversaries.
Journal of Cryptology23:281-343, 2010.

[7] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Giregthe correctness of memorigsdgorithmica
12(2):225-244, 1994.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures froenweil pairing. InProceedings of the 7th In-
ternational Conference on the Theory and Application ofg@ology and Information Security: Advances in
Cryptology ASIACRYPT '01, pages 514-532, London, UK, UK, 2001. Spenyerlag.

[9] K. D. Bowers, A. Juels, and A. Oprea. Hail: A high-availél and integrity layer for cloud storage. IACM
Int. Conference on Computer and Communications Securis{j(pages 187-198, 2009.

[10] D. Cash, A. Kiip¢i, and D. Wichs. Dynamic proofs ofi@tability via oblivious ram. ImPAnnual Int. Conference
on the Theory and Applications of Cryptographic TechnigqiE#2$ROCRYPT,)pages 279-295, 2013.

22

[11] N. Chandran, B. Kanukurthi, and R. Ostrovsky. Localpdatable and locally decodable codesT®C, pages
489-514. Springer, 2014.

[12] B. Chen and R. Curtmola. Auditable version control syss. InProceedings of the ISOC 21st Annual Network
and Distributed System Security SymposiNDSS '14, 2014.

[13] D. E. Clarke, S. Devadas, M. van Dijk, B. Gassend, and.Guh. Incremental multiset hash functions and their
application to memory integrity checking. Proceedings of the 9th International Conference on the Mmheo
and Application of Cryptology and Information Security: vadces in CryptologyASIACRYPT '03, pages
188-207, 2003.

[14] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdifultiple-replica provable data possession. In
Proceedings of the 28th International Conference on Dhstied Computing Syste€DCS, pages 411-420,
Washington, DC, USA, 2008. IEEE Computer Society.

[15] Y. Dadis, S. Vadhan, and D. Wichs. Proofs of retrievitpiia hardness amplification. IRroceedings of the 6th
Theory of Cryptography Conference on Theory of CryptogyaplC '09, pages 109-127, Berlin, Heidelberg,
2009. Springer-Verlag.

[16] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathahlow efficient can memory checking be? In
Proceedings of the 6th Theory of Cryptography Conferenc&hmory of CryptographyTCC '09, pages 503—
520, Berlin, Heidelberg, 2009. Springer-Verlag.

[17] C. Erway, A. Kupcl, C. Papamanthou, and R. Tamasflgnamic provable data possession. AGM Int.
Conference on Computer and Communications Security (q&8gs 213-222, 2009.

[18] E. Esiner, A. Kachkeev, S. Braunfeld, A. Kiipci, andd@@kasap. Flexdpdp: Flexlist-based optimized dynamic
provable data possessioBryptology ePrint Archive, Report 2013/645013.

[19] E. Esiner, A. Kiipcii, an®. Ozkasap. Analysis and optimization on flexdpdp: A practimaiition for dynamic
provable data possession. Iitelligent Cloud Computing (ICCR014.

[20] M. Etemad and A. Kiipcl. Transparent, distributat eeplicated dynamic provable data possessioApiplied
Cryptography and Network Security Conference (ACK&)es 1-18, 2013.

[21] D. L. Gazzoniand P. S. L. M. Barreto. Demonstrating getssession and uncheatable data transfer. Cryptology
ePrint Archive, Report 2006/150, 2006.

[22] M. T. Goodrich, C. Papamanthou, R. Tamassia, and Nn@iopoulos. Athos: Efficient authentication of out-
sourced file systems. IRroceedings of the 11th International Conference on Infiiam Security ISC '08,
pages 80-96. Springer-Verlag, 2008.

[23] M. T. Goodrich, R. Tamassia, and A. Schwerin. Impleraéioh of an authenticated dictionary with skip lists
and commutative hashing. IDARPA Information Survivability Conference & Expositidn(DISCEX) pages
68-82, 2001.

[24] A. Juels and B. S. Kaliski. PORs: Proofs of retrievapifor large files. INnACM Int. Conference on Computer
and Communications Security (CCBages 584-597, 2007.

[25] A. Kachkeev, E. Esiner, A. Kiipci, arfel Ozkasap. Energy efficiency in secure and dynamic cloudgsorin
Energy Efficiency in Large Scale Distributed Systems, EBS. $ages 125-130, 2013.

[26] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, andri. Plutus: Scalable secure file sharing on untrusted
storage. IrProceedings of the 2nd USENIX Conference on File and StofagenologiesFAST '03, pages 29—
42, Berkeley, CA, USA, 2003. USENIX Association.

[27] S. Kamara and K. Lauter. Cryptographic cloud storage?rbceedings of the 14th International Conference on
Financial Cryptograpy and Data SecurjtiFC’10, pages 136-149, Berlin, Heidelberg, 2010. Sprivgelag.

23

[28] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, Pt&g D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: an architector global-scale persistent storagdCM
SIGPLAN Not.35(11):190-201, 2000.

[29] A. Kupcu. Efficient Cryptography for the Next Generation Secure CldeiaD thesis, Brown University, 2010.

[30] A. Kupgu. Efficient Cryptography for the Next Generation Secure Cldebtocols, Proofs, and Implementa-
tion. Lambert Academic Publishing, 2010.

[31] A. Kupgu. Official arbitration with secure cloud sége applicationThe Computer JournaR013.

[32] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. yidamic authenticated index structures for outsourced
databases. IRroceedings of the 2006 ACM SIGMOD International Confegemic Management of Dat&IG-
MOD '06, pages 121-132, New York, NY, USA, 2006. ACM.

[33] J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secureustéd data repository (sundr). Rroceedings of the
6th Conference on Symposium on Opearting Systems Desigpl&rrantation - Volume, ®SDI'04, Berkeley,
CA, USA, 2004. USENIX Association.

[34] U. Maheshwari, R. Vingralek, and W. Shapiro. How to dul trusted database system on untrusted storage. In
Proceedings of the 4th Conference on Symposium on Oper@tisigm Design & Implementation - Volume 4
OSDI'00, pages 10-26, Berkeley, CA, USA, 2000. USENIX Asstan.

[35] R. Merkle. A digital signature based on a conventionatrgption function. Int. Cryptology Conference
(CRYPTO)pages 369-378, 1987.

[36] G. L. Miller. Riemann’s hypothesis and tests for priityalln Proceedings of Seventh Annual ACM Symposium
on Theory of ComputingsTOC '75, pages 234-239, New York, NY, USA, 1975. ACM.

[37] A.Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. tvi read/write peer-to-peer file system.Pnoceedings
of the 5th Symposium on Operating Systems Design and Impuiatine, OSDI '02, pages 31-44, New York,
NY, USA, 2002. ACM.

[38] M. Naor and K. Nissim. Certificate revocation and cestife update. liProceedings of the 7th Conference on
USENIX Security Symposium - Volume&BYM’'98, Berkeley, CA, USA, 1998. USENIX Association.

[39] M. Naor and G. N. Rothblum. The complexity of online memohecking. InProceedings of the 46th Annual
IEEE Symposium on Foundations of Computer ScieR€CS '05, pages 573-584, Washington, DC, USA,
2005. IEEE Computer Society.

[40] A. Oprea, M. Reiter, and K. Yang. Space-efficient blottkage integrity. IfNDSS 2005.

[41] C. Papamanthou and R. Tamassia. Time and space effadgorithms for two-party authenticated data struc-
tures. InProceedings of the 9th International Conference on Infdiammand Communications Security
ICICS’07, pages 1-15, Berlin, Heidelberg, 2007. Springenag.

[42] C. Papamanthou, R. Tamassia, and N. Triandopouloshehticated hash tables. Rroceedings of the 15th
ACM Conference on Computer and Communications Sec@®s '08, pages 437-448, New York, NY, USA,
2008. ACM.

[43] W. Pugh. Skip lists: A probabilistic alternative to bated treesCommun. ACM33(6):668-676, June 1990.
[44] I. Reed and G. Solomon. Polynomial codes over certaiteffields. Journal of SIAM 8:300-304, 1960.

[45] T. S. J. Schwarz and E. L. Miller. Store, forget, and d¢hebtlsing algebraic signatures to check remotely
administered storage. IRroceedings of the 26th IEEE International Conference ostiibliuted Computing
SystemsICDCS '06, Washington, DC, USA, 2006. IEEE Computer Sgciet

[46] F. Sebe, A. Martinez-Balleste, Y. Deswarte, J. Domifgore, and J.-J. Quisquater. Time-bounded remote file
integrity checking. Technical Report 04429, LAAS, July 200

24

[47]
[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

H. Shacham and B. Waters. Compact proofs of retrieitgbilournal of Cryptology26(3):442—-483, 2013.

M. A. Shah, R. Swaminathan, and M. Baker. Privacy-pndag audit and extraction of digital contents. Tech-
nical report, HP Labs Technical Report No. HPL-2008-32,800

E. Shi, E. Stefanov, and C. Papamanthou. Practicalrdi;mproofs of retrievability. IPACM Int. Conference on
Computer and Communications Security (CGges 325-336, 2013.

E. Stefanov, M. van Dijk, A. Juels, and A. Oprea. Iris: dakable cloud file system with efficient integrity
checks. InProceedings of the 28th Annual Computer Security AppboatiConferenceACSAC '12, pages
229-238, New York, NY, USA, 2012. ACM.

R. Tamassia. Authenticated data structures=uropean Symposium on Algorithms (ES#gges 2-5, 2003.

R. Tamassia and N. Triandopoulos. Computational bswd hierarchical data processing with applications
to information security. IrProceedings of the 32Nd International Conference on Autamzanguages and
Programming ICALP’05, pages 153-165, Berlin, Heidelberg, 2005. SyeinVerlag.

C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preseryinglic auditing for data storage security in cloud
computing. InProceedings of the 29th Conference on Information Comnatinits INFOCOM’10, pages
525-533, Piscataway, NJ, USA, 2010. IEEE Press.

Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling pablerifiability and data dynamics for storage
security in cloud computing. lEuropean Symposium on Research in Computer Security (ES®)Rlages
355-370, 2009.

Q. Zheng and S. Xu. Fair and dynamic proofs of retrieMgbiln Proceedings of the First ACM Conference on
Data and Application Security and Privacd@ ODASPY 11, pages 237—-248, New York, NY, USA, 2011. ACM.

25

