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Abstract
With increasing popularity of cloud storage, efficiently proving the integrity of data stored at an
untrusted server has become significant. Authenticated Skip Lists and Rank-based Authenticated
Skip Lists (RBASL) have been used to provide support for provable data update operations in cloud
storage. However, in a dynamic file scenario, an RBASL based on block indices falls short when
updates are not proportional to a fixed block size; such an update to the file, even if small, may result
in O(n) updates on the data structure, for a file with n blocks.

To overcome this problem, we introduce FlexList: Flexible Length-Based Authenticated Skip
List. FlexList translates variable-size updates to O(d uB e) insertions, removals, or modifications,
where u is the size of the update, and B is the (average) block size. We further present various
optimizations on the four types of skip lists (regular, authenticated, rank-based authenticated, and
FlexList). We build such a structure in O(n) time, and parallelize this operation for the first time.
We compute one single proof to answer multiple (non-)membership queries and obtain efficiency
gains of 35%, 35% and 40% in terms of proof time, energy, and size, respectively. We propose a
method of handling multiple updates at once, achieving efficiency gains of up to 60% at the server
side and 90% at the client side. We also deployed our implementation of FlexDPDP (DPDP with
FlexList instead of RBASL) on the PlanetLab, demonstrating that FlexDPDP performs comparable
to the most efficient static storage scheme (PDP), while providing dynamic data support.
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1 Introduction
Data outsourcing has become quite popular in recent years both in the industry (e.g., Amazon S3, Drop-
box, Google Drive, Apple iCloud, Microsoft OneDrive) and academia [4, 6, 18, 24, 25, 37, 51, 18, 28,
52, 19, 53]. In a cloud storage system, there are two main parties, namely a server and a client, where the
client transmits her files to the cloud storage server and the server stores the files on behalf of the client.
For the client to be able to trust the service provider, she should be able to verify the integrity of the data.
A trustworthy brand is not sufficient for the client, since hardware/software failures or malicious third
parties may also cause data loss or corruption [16]. The client should be able to efficiently and securely
check the integrity of her data without downloading the entire data from the server, since that will be
prohibitively costly [4].

One such model proposed by Ateniese et al. is Provable Data Possession (PDP) [4] for provable
data integrity. In this model, the client can challenge the server on random blocks and verify the data
integrity through a proof sent by the server. PDP and related static (append-only) schemes [4, 5, 24,
37, 51] show poor performance for block-wise update operations (insertion, removal, modification).
While the static scenario can be applicable to some systems (e.g., archival storage at the libraries), for
several applications it is important to take into consideration the dynamic scenario, where the client
keeps interacting with the outsourced data in a read/write manner, while maintaining the data possession
guarantees. Scalable PDP proposed in [6] overcomes this problem with some limitations (only a pre-
determined number of operations are possible within a limited set of operations). A solution called
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Dynamic Provable Data Possession (DPDP) proposed in [25] extends the PDP model and provides a
dynamic storage scheme. Implementation of the DPDP scheme requires an underlying authenticated
data structure based on a skip list [49].

A skip list [49] is a tree-like hierarchical key-value store whose nodes are sorted according to their
keys. Authenticated skip lists are presented by [32], where skip lists and commutative hashing are
employed in a data structure for authenticated dictionaries. In an authenticated skip list, each node
stores a hash value calculated with the use of its associated value and the hash values of its neighboring
nodes. The hash value of the root is the authentication information (meta data) that the client stores
in order to verify responses from the server. To insert a new block into an authenticated skip list, one
must decide on a key for insertion, since the skip list is sorted according to the key values. This is very
useful if one, for example, inserts files into directories, since each file will have a unique name within
the directory, and searching by this key is enough for general directory-related tasks. However, when
one considers blocks of a file to be inserted into an authenticated skip list, the blocks do not have unique
names; they have indices. Unfortunately, in a dynamic scenario, an insertion/deletion would necessitate
incrementing/decrementing the keys of all the blocks to the right of the affected block till the end of the
file, resulting in unreasonable performance.

DPDP [25] employs Rank-based Authenticated Skip List (RBASL) to overcome this limitation.
Instead of providing an insertion key, the index where the new block should be inserted is given. These
indices are imaginary (no node stores the index information). The index information can be derived
using the stored rank information, but ranks can easily be updated such that a block insertion/deletion
does not propagate to other blocks.

Theoretically, a block-based RBASL provides dynamic updates with O(log n) complexity, for
a file with n blocks, assuming the updates are multiples of the fixed block size. Unfortunately, a
variable size update leads to the propagation of changes to other blocks, making block-based RBASL
inefficient in practice. Therefore, one variable size update may affect O(n) other blocks. We discuss
this in Section 4.

In this paper, we propose FlexList to overcome the problem in DPDP. In FlexList, rather than ranks,
which are indices of blocks, lengths, which are indices of bytes of data, are employed. This enables
searching, inserting, removing, modifying, or challenging a specific block containing the byte at a spe-
cific index of data. Since in practice a data alteration occurs starting from a byte-index of the file, not
necessarily an index of a block of the file, our DPDP with FlexList (that we call FlexDPDP) performs
much faster than the original DPDP with RBASL. Even though Erway et al. [25] were the first to (infor-
mally) present the idea where the client makes updates on a range of bytes instead of blocks, we show
that a naive implementation of the idea leads to insecurity in the storage system, as we show via an
attack in Section 6. Moreover, we argue that variable block size support is not just a cool feature, but it
is a necessity for real deployments, as our real SVN tests show (see Section 7.3).

We do much more than just implementing their idea securely. We also present many optimizations
on FlexDPDP that are observed and proposed for the first time for dynamic secure cloud storage. Our
optimizations result in a dynamic cloud storage system whose efficiency is comparable to the best known
static systems (PDP [4]), while still providing provable integrity for dynamically updatable data.

Our contributions are as follows:

• We provide the first implementation of rank-based authenticated skip list and flexible length-based
authenticated skip list with the optimal number of links and nodes.
• We created optimized algorithms for basic operations (i.e., insertion, deletion). These optimiza-

tions are applicable to all skip list types (skip list, authenticated skip list, rank-based authenticated
skip list, and FlexList).
• Our FlexList translates a variable-sized update to O(d uB e) insertions, removals, or modifications,

where u is the size of the update, and B is the (average) block size (e.g., 2KB), while an RBASL
based on block indices requires O(n) block updates in the worst case, where n is the total number
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of blocks in the file.
• We provide, for the first time, multi-prove and multi-verify capabilities in cases where the client

challenges the server for multiple blocks using authenticated skip lists, rank-based authenticated
skip lists and FlexLists. Our algorithms provide an optimal proof, without any repeated items.
The experimental results show efficiency gains of 35%, 35%, 40% in terms of proof time, energy,
and size, respectively.
• We provide a novel algorithm to build a FlexList from scratch in O(n) time instead of O(n log n)

(time for n insertions). Our algorithm assumes the original data is already sorted, which is the
case when a FlexList is constructed on top of a file in secure cloud storage. Interestingly enough,
our algorithm turns out to be well parallelizable even though FlexList is an authenticated data
structure where hashes generate dependencies among the nodes. Our parallel build algorithm
achieves speed ups of 6 and 7.7, with 8 and 12 cores, respectively.
• We provide a multi-block update algorithm that achieves 60% efficiency gains at the server side,

compared to updating blocks independently, when the updates are on consecutive data blocks.
Similarly, we achieve up to 90% efficiency improvements at the client side. Our new algorithm
is applicable to not only modify, insert, and remove operations but also a mixed series of update
operations.
• We deployed our FlexDPDP client-server implementation on the network testbed PlanetLab and

also tested its applicability on a real SVN deployment. The results demonstrate that our opti-
mizations enable 4 times faster proof generation for consecutive updates in real life scenarios, and
our FlexDPDP performs comparable to the most efficient static storage scheme (PDP), while
providing dynamic data support.

The rest of the paper is organized as follows. In Section 2, our motivation behind this study is
described. Section 3 introduces definitions of skip list data structure and its variants. In Section 4, details
of our FlexList proposal and optimizations are described. Then, in Section 5, details of FlexDPDP that
provides FlexList-based dynamic secure cloud storage are provided. Security proof of FlexDPDP and
the importance of authenticating data length values are described in Section 6. Extensive analysis results
including FlexList and FlexDPDP performances, deployment on the PlanetLab distributed platform,
comparison with block-based DPDP and static cloud storage on the PlanetLab are presented in Section
7. Discussion of related work is provided in Section 8, followed by conclusions and future directions in
Section 9.

2 Motivation
In order to provide provable data possession, we employ a rooted data structure named FlexList, which
is an authenticated dictionary. First, the file is divided into blocks (of some average size, e.g., 2KB), and
the FlexList is constructed over these blocks. Each node of FlexList keeps a hash value that depends on
its children, as well as the associated length value (similar to a rank in an RBASL). Thus, the rooted data
structure creates dependency over all blocks (similar to a Merkle tree [42]). As in other authenticated
dictionaries, any change in the FlexList nodes (e.g., their lengths), or associated blocks will result in a
different root hash, due to the use of a collision-resistant hash function.

We then employ our FlexList in DPDP [25] (instead of the RBASL), and call the resulting scheme
FlexDPDP. The meta data kept by the client is the root hash of the FlexList. The remaining parts are
the same as the original DPDP construction of Erway et al. [25], though we show that the resulting
efficiency gains cannot be neglected. We further optimize FlexDPDP for cloud storage operations, such
as efficiently building a FlexList over a file during the initial upload, or proving and verifying multiple
data blocks simultaneously (as suggested by PDP [4]), as well as updating multiple blocks, even with
different update types (i.e., even for an update that involves modifications together with insertions and
deletions). With these optimizations, we show that our dynamic cloud storage scheme’s efficiency
is comparable to that of the best static scheme.
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Why FlexList? Erway et al. [25] showed that, making use of a new authenticated data structure,
dynamic secure cloud storage solutions are possible. Yet, their main proposal is block-wise dynamic,
since they use rank information to organize the data items. The rank of a node in an RBASL denotes the
number of blocks reachable from that node (by moving right or down, in total). As long as the updates
are of a fixed size (which is the initial block size), the scheme is efficient. By observing our own SVN
repository’s trace (used for over a year), we see that updates from a client are very rarely multiples of
a fixed size. The SVN trace shows that the greatest common divisor of the sizes of all the commits is
1 byte. Therefore it is not possible to find a meaningful block size that is the common divisor for all
updates. This shows that an update is variable sized by its nature. Therefore, a dynamic provable data
possession solution should support variable block sizes. Erway et al. [25] also argue the same, without
detailing such a construction.

When the updates are of variable block size, a block-based DPDP needs O(n) many updates on
the data structure due to the shifting of the content. We explicitly show an example in Section 4. A
simple attempt to overcome this problem is padding the blocks that are shorter than the size of the fixed
block size, and using regular DPDP. Unfortunately, this hack is not an ideal solution. Firstly, padding
increases the storage requirement at the server and once in a while necessitates a reconstruction of the
data structure used. The more frequent the updates are, the more reconstructions are needed. Not only
that, but also current cloud services where a client wants to update their data frequently require the
option for the client to update a part of their data. Thus, the client needs to access a particular part of
the data. If only block-wise provable access is available due to the block-based DPDP scheme, then for
the client to find her wished part of the data becomes an operation of complexity O(n), since a traverse
from the start is necessary. Consider, for example, a client wishing to update her data starting from the
2016th byte. For the server to find the desired block, he needs to go over all the blocks, and count the
actual data bytes without padding (see further Section 7.4).

Moreover, since the client has no clue which index is under which block, she can be cheated by
the server who may send another part of the data, claiming that it indeed contains the desired byte (see
Section 6). This insecurity may be tried to be solved via also authenticating the padding lengths together
with the actual data lengths, but instead we implement FlexList, which provides an elegant, provably
secure, and efficient way of dealing with variable-sized blocks, without any complications or storage
overhead of padding. We note that FlexList and FlexDPDP are not just an implementation of the Erway
et al. [25] variable block size idea, but in addition, they incorporate many novel optimization ideas that
result in great efficiency gains as we detail later.

3 Definitions
Skip List is a probabilistic data structure presented as an alternative to balanced trees [49]. It is easy to
implement without complex balancing and restructuring operations such as those in AVL or Red-Black
trees [2, 8]. A skip list keeps its nodes ordered by their key values. We call a leaf-level node and all
nodes directly above it at the same index a tower.

Figure 1: A regular skip list with the search path
of the node with the key 24 highlighted. Numbers
on the left represent levels. Numbers inside nodes
are key values. Dashed lines indicate unnecessary
links and nodes.

Figure 2: Skip list of Figure 1 without unneces-
sary links and nodes.

Figure 1 demonstrates a search on a skip list. The search path for the node with key 24 is highlighted
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in bold. In a basic skip list, the nodes include key, level, and data (only at the leaf level) information,
and below and after links (e.g., v2.below = v3 and v2.after = v4). To perform the search for 24, we
start from the root (v1) and follow the below link to v2, because v1’s after link leads to a node which
has a key greater than the key we are searching for (∞ > 24). Then, from v2 we follow the link l1
to v4, since the key of v4 is smaller than (or equal to) the searched key (11 ≤ 24). In general, if the
key of the node where the after link leads is smaller or equal to the key of the searched node, we
follow that link; otherwise we follow the below link. Using the same decision mechanism, we follow
the highlighted links until the searched node is found at the leaf level (if it does not exist, then the node
with key immediately before the searched key is returned).

We observe that some of the links are never used in the skip list, such as l2, since any search operation
with key greater or equal to 11 will definitely follow the link l1, and a search for a smaller key would
never advance through l2. Thus, we say links, such as l2, that are not present on any search path are
unnecessary. When we remove the unnecessary links, we observe that the non-leaf-level nodes that are
left without after links (e.g., v3) are also unnecessary, since they do not provide any new dependencies
in the skip list. Every time they are visited, the search will just continue following the below link of
such a node. Although it does not change the asymptotic complexity, it is beneficial not to include them
for time and space efficiency, as our experimental results confirm. An optimized version of the skip list
from Figure 1 can be seen in Figure 2 with the same search path highlighted. Formally:

• A link is necessary if and only if it is on some search path.
• A node is necessary if and only if it is at the leaf level or has a necessary after link.

Assuming existence of a collision-resistant hash function family H , we randomly pick a hash func-
tion h from H and let || denote concatenation. Throughout our study we will use: hash(x1, x2, ..., xm)
to mean h(x1||x2||...||xm).1

An authenticated skip list is constructed with the use of a collision-resistant hash function and
keeps a hash value at each node [33]. The hash value is calculated with the following inputs: level
and key of the node, and the hash values of the node after and the node below. If there is no after
neighbor, then a dummy value (e.g., null) is used in the hash calculation. Through the inputs to the hash
function, all nodes are dependent on their after and below neighbors. Thus, the root node is dependent
on every node. Leaf nodes (at level 0) keep links to the file blocks (or to different structures e.g., files,
directories, tags: anything to be kept intact). If any node of the skip list is modified, or the values
linked at the leaf level nodes are modified, then this will result in a different hash of the root. Due to
the collision resistance of the hash function, knowing the hash value of the root is sufficient for later
integrity checking.

A rank-based authenticated skip list (RBASL) is different from an authenticated skip list by
means of how it indexes data [25]. An RBASL has rank information (used in hashing, replacing the key),
meaning how many leaf-level nodes are reachable from that node. An RBASL is capable of performing
all operations that an authenticated skip list can, in the cloud storage context. Throughout the paper,
whenever we say RBASL, we mean the version based on the block indices.

4 FlexList
FlexList is an authenticated data structure (an example is shown in Figure 3), where each node keeps a
hash value calculated according to its rank, level, the hash value of below neighbor, and the hash value
of the after neighbor, where rank is the number of bytes that can be reached from that node and level
is the height of a node in the FlexList. Each leaf level node keeps a link to the data (a block of the file
stored) that it refers to, the length of the data, and a tag value calculated according to that data. Rank
values are calculated by adding the below and after neighbors’ ranks. If a node is at the leaf level, we

1We assume the necessary care is taken to fix the bitlengths of the concatenated values so that the hash is still collision
resistant.
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use the length of its data as the below neighbor’s rank. Leaf level nodes’ hash calculation is slightly
different. As the hash value of below neighbor, we use the associated tag, and in addition, the length
value is also included in the hash calculation. Note that, the root node is dependent to all (leaf level)
nodes.

Figure 3: A FlexList example. The numbers at the bottom are the lengths of the data blocks associated
with the leaf level nodes. The numbers in the nodes are their ranks. The numbers at the left denote
levels.

FlexList has sentinel nodes as the first and last nodes. Sentinel nodes have no data; hence their
length values are 0 and they do not affect the rank values of the other nodes. These nodes generate no
new dependencies, but are useful to make algorithms easier and more understandable.

A FlexList supports variable-sized blocks, whereas an RBASL (based on block indices) can only
be used with fixed block size (since operations by the byte-index of the data are not possible with
the rank information of an RBASL). In FlexList, instead of using the block indices as ranks as in the
RBASL, we use byte indices. Thus, the information stored at each node denotes the number of bytes
of data reachable from that node. Erway et al. [25] observed this first. We show the advantage of this
approach via an example.

Figure 4: Skip list alterations depending on an up-
date request.

Consider Figure 4-A that represents an out-
sourced file divided into blocks of fixed size. In
our example, the client wants to change the file
composed of the text “The quick brown fox jumps
over the lazy dog...” such that “brown” becomes
“red”. The client’s diff algorithm returns “[delete
from index 11 to 15] and [insert “red” starting
from index 11]”. Apparently, a modification to
the 3rd block will occur. With a rank-based skip
list, to continue functioning properly, a series of
updates is required as shown in Figure 4-B, which
asymptotically corresponds to O(n) alterations
(assuming no padding, see Section 7.4). There-
fore, for instance, an RBASL having 500000 leaf-
level nodes needs an expected 250000 update op-
erations for a single variable-sized update, such
as the one in this example. Besides the modify
operations and related hash calculations, this also
corresponds to 250000 new tag calculations either
on the server side, where the private key (the or-
der of the RSA group) is unknown (and thus computation is very slow), or at the client side, where all
the new tags should go through the network. Furthermore, a verification process for the new blocks
is also required (which means a huge proof sent by the server and verified by the client, who needs to
compute an expected 375000 hash values). With our implementation of FlexList, only one modification
suffices, as indicated in Figure 4-C.

FlexList overcomes the problem of RBASL, which is not capable of providing variable block sized
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operations. At each node, a FlexList stores the number of bytes that can be reached from that node,
instead of number of blocks that are reachable. The rank of each leaf-level node is computed as the
sum of the length of its data and the rank of the after node (0 if null). The length information of
each data block is added as a parameter to the hash calculation of that particular block. We discuss
the insecurity of an implementation that does not include the length information in the hash function
calculation in Section 6. Note that when the length of the data at each leaf is considered as a unit,
the FlexList reduces to an RBASL (thus, ranks only count the number of reachable blocks). Therefore
all our optimizations are also applicable to RBASL, which is a special case of FlexList. Thus, our
implementation of FlexList is not just an RBASL with block indices changed to byte indices, but it
includes many novel optimizations and algorithmic approaches that make it stand out in the field of
outsourced data integrity.

4.1 Preliminaries
In this section, we introduce the helper methods required to traverse the skip list, create missing nodes,
delete unnecessary nodes, delete nodes, and decide on the level to insert at, to be used in the essential
algorithms (search, modify, insert, remove).

To make our FlexList algorithms easier to understand, we define the sub skip list concept. An
example is illustrated in Figure 5. Let the search index be 250 and the current node start at the root (v1).
The search is similar to an RBASL. At each node, we compare the rank of the below node to see if we
can reach the searched index via that node. In this example, the below node of v1 is v2, who can reach
350 bytes of data. Since we are searching for the index 250, we continue with v2. The current node
follows its below link to v2 and enters a sub skip list (big dashed rectangle).

Figure 5: A FlexList example with 2 sub
skip lists indicated.

Now, v2 is the root of this sub skip list and the searched
node is still at index 250. We again look at the below node
of v2. But this time it is useless for our purposes, since it
can only reach 100 bytes whereas we are searching for 250.
Thus, we should continue with the after node. In order
to reach the searched node, the current node moves to v3,
which is the root of another sub skip list (small dashed rect-
angle).

Note that by moving after, we have skipped over some
data equivalent to the rank of the below node we skipped
over. We were originally searching for index 250, but now
that we have skipped over 100 bytes of data, in this sub skip
list, we continue our search with 250 − 100 = 150. The

amount reduced from the search index is equal to the difference between the rank values of v2 and v3,
which is equal to the rank of below of v2. Whenever the current node follows an after link, the search
index should be updated, since some data is skipped over. On the other hand, if a below link is followed,
no data is skipped, and thus the search index stays the same. To finish the search, the current node
follows the after link of v3 to find the node containing the searched index.

We now present our utility functions as a preliminary to understanding the main methods. Note that
all algorithms are designed to fill a stack tn that stores nodes which may need a recalculation of the hash
values if the data structure authenticated, and rank values if used in a FlexList or RBASL. All algorithms
that move the current node cn immediately push the new current node to the stack tn as well. All these
algorithms are provided in the Appendix, together with Table 4, which shows the notation used.
canGoBelow (Algorithm A.1) and canGoAfter (Algorithm A.2) are the two methods that constitute
the decision mechanism of the traversal in the FlexList. They check if the searched index can be found
following the below or after link, respectively. There are some slight differences depending on from
which other algorithm these are called. They are stated as comments in the algorithms.
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nextPos (Algorithm A.3): The nextPos method moves the current node cn repetitively until the position
desired by the calling method (search, insert, remove) is reached. There are 4 cases for nextPos
depending on the caller:

• insert - moves the current node cn to the node immediately before the insertion point at the
insertion level.
• loop in insert - moves cn until it finds the next insertion point for a new node.
• remove or search - moves the current node cn until it finds the searched node’s tower.
• loop in remove - moves the current node cn until it encounters the next node to delete.

tossCoins (no pseudocode given): Probabilistically determines the level value for a new node tower. A
coin is tossed until it comes up heads. The output is the number of consecutive tails.
createMissingNode (Algorithm A.4) is used in both the insert and remove algorithms. Since in a
FlexList there are only necessary nodes, when a new node needs to be connected, this algorithm creates
any missing node to make the connection.
deleteUNode (Algorithm A.5) is employed in the remove and insert algorithms to delete an unnecessary
node (this occurs when a node loses its after node, except at the leaf level) and maintain the links. It
takes the previous node and current node as inputs, where the current node is unnecessary and meant to
be deleted. We preserve connections between the necessary nodes after the removal of the unnecessary
one. This includes the deletion of the current node if it is not at the leaf level. It sets the previous node’s
after or below to the current node’s below. As the last operation of deletion, we remove the top node
from the stack tn, as its rank and hash values no longer need to be updated.
deleteNode method, employed in the remove algorithm, takes two consecutive nodes, the previous node
and the current node. By setting after pointer of the previous node to current node’s after, it detaches
the current node from the FlexList.
4.2 Methods of FlexList
We first describe the basic functions of FlexList such as search, modify, insert, and remove. Then, we
show how to employ these functions in a secure cloud storage system. All algorithms are designed to fill
a stack for the possibly affected nodes, whose rank and hash values may need re-calculation. The nodes
in the stack constitute a search path, which is the basis of a proof path.
search (Algorithm A.6) is used to find a particular index. It takes the index i as the input, and outputs
the node at index i and the stack tn filled with the nodes on the search path. Any value between 0 and
the file size in bytes is valid to be searched. It is not possible for a valid index not to be found in a
FlexList.

In the search algorithm, the current node cn starts at the root. The nextPos method moves cn to
the position just before the top of the tower of the searched index. Then cn is taken to the searched
node’s tower and moved all the way down to the leaf level. The leaf-level node at the searched index is
returned. All the nodes along the path from the root to this node are added to the stack that is returned
as well.
modify (Algorithm A.7): By taking index i and some new data as input, this algorithm first uses the
search algorithm to find the node that includes the data at index i, and then updates its data. The outputs
are the modified node and the stack tn filled with nodes on the search path. Afterwards, this stack is
used to recalculate the hash values of the nodes along the search path, in a bottom-up fashion.
insert (Algorithm A.8) is run to add a new node to the FlexList by adding new nodes along the insertion
path. The inputs are the index i and data. The algorithm generates a random insertion level by tossing
coins, then creates the new node with the given data and attaches it to the index i, along with the
necessary nodes until the level. Note that this index should be the beginning index of an existing node,
since inserting a new block inside an existing block makes no sense.2 As output, the algorithm returns
the stack tn filled with nodes on the search path of the new block.

2In case of an addition inside a block, we can do the following: search for the block including the byte where the insertion
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Figure 6 demonstrates the insertion of a new node at index 450 with level 4. nextPos brings the
current node to the closest node to the insertion point with level greater than or equal to the insertion
level (c1 in the figure). We create any missing node at the level, if there was no node to connect the
new node to (in our example, m1 is created to connect n1 to). Within the while loop, during the first
iteration, nextPos adds c2, c3, and d1 to the stack, and stops at d1. Then a new node n1 is created
and inserted to level 2, after m1. Inserting n1 makes d1 unnecessary, since n1 stole its after link (i.e.,
n1.after = v4 now, and d1.after is null). Thus, d1 is deleted by deleteUNode, and removed from the
stack. Likewise, in the next iteration n2 is created and inserted at level 1 (as below of n1). Since n2 steals
the after link of d2 (i.e., n2.after = v3 now, and d2.after is null), d2 is removed as unnecessary. Note
that removal of d1 and d2 results in c3 getting connected to v1 (i.e., first, when d1 is removed, c3.after
becomes d2. Then, when d2 is removed, c3.after becomes v1.). The last iteration inserts n3, and places
data. Since this is a FlexList, hashes and ranks of all the nodes in the stack will be recalculated (i.e.,
stack contains c1,m1, n1, c2, c3, n2, n3, v1, v2). Those are the only nodes whose hash and rank values
might have changed.

Figure 6: Insert at index 450, level 4 (FlexList).

remove (Algorithm A.9) is run to remove the node that starts with the byte at the index i. As input, it
takes the index i. The algorithm detaches the node to be removed and all other nodes above it (i.e., the
tower) while preserving connections between the remaining nodes. The algorithm returns the stack tn
filled with the nodes on the search path of the left leaf-level neighbor of the node removed.

Figure 7 demonstrates removal of the node having the byte with index 450. The algorithm starts
at the root c1, and stops first at d1, since that node points to our deletion tower. The tower is to be
removed, and hence d1 is no longer necessary. Therefore, d1 is deleted, c1.below becomes c2, and
the search continues. Next, we go find the next node pointing to the deletion tower. This node is c3,
which is currently connected to d2. Since d2 is to be deleted, creating of a missing necessary node m1

is required such that m1.after = v4. Once m1 is created at the same level as d2 and d2 is deleted,
c3.after becomes m1. Continuing our search, we now stop at m1, delete d3, create a missing node m2

at the same level as d3, such that m2.after = v3. The last iteration moves the current node to v2 and
deletes d4 without creating any new nodes, since we are at the leaf level. The output stack contains nodes
(c1, c2, c3,m1,m2, v1, v2). Rank and hash values of those nodes could have changed, those values will
be recalculated.

4.3 Novel Build from Scratch Algorithm
The usual way to build a skip list (or FlexList) is to perform n insertions (one for each underlying item).
Such an approach will result in O(n log n) total time complexity. But, when the underlying data is
already sorted, as in the secure cloud storage scenario (where the blocks of a file are already sorted by
their indices), a much more efficient algorithm can be developed.

will take place, add our data in between the first and second part of data found to obtain new data and employ modify algorithm
(if new data is long, we can divide it into parts and send it as one modification and a series of insertions).
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Figure 7: Remove block at index 450 (FlexList).

Observe that a skip list contains 2n nodes in expectation [49]. The O(n log n) complexity is a
result of the sorting requirement. Therefore, on already sorted data, we present our novel algorithm for
building a FlexList from scratch in O(n) time. To the best of our knowledge, such an efficient build
algorithm was not proposed before, not even for regular skip lists.
buildFlexList (Algorithm A.10) algorithm generates a FlexList over a set of sorted data in time com-
plexity O(n) with high probability. It has the small space complexity of O(l) where l is number of
levels in the FlexList (i.e., l = O(log n) with high probability). As the inputs, the algorithm takes the
list of blocks B on which the FlexList will be generated, the corresponding (randomly generated) levels
L and tags T . The algorithm assumes data is already sorted. In cloud storage, the blocks of a file are
already sorted according to their block indices, and thus our optimized algorithm perfectly fits our target
scenario. As the output, the algorithm returns the root node of the constructed FlexList. It works from
right to left and bottom to top, thus performing a single pass over the nodes.

Figure 8 demonstrates an example FlexList build process where the insertion levels of blocks are 4,
0, 2, 0, 0, 0, 1, 0, 0, 1, 0, in order. Labels vi on the nodes indicate the generation order of the nodes.
The idea of the algorithm is to build towers for each block, up to the associated level. As shown in the
figure, all towers have only one link from left side to its tower head (the highest node in the tower). For
example, the head of the tower composed of v6, v7 is v7 , and there is only one link coming to that tower
from left, which is the link from v12 to the tower head v7. Therefore, we need to store the tower heads
in a vector, and then make necessary connections.

At a high level, the algorithm starts creating the rightmost tower first. The algorithm then remembers
its tower head at the associated level. Then, the second rightmost tower is created. If there are tower
heads to the right of it that it should be connected to, those connections are created. For example, when
it is the turn of the v6, v7 tower, we know that it should be connected to v5 at level 0, v3 at level 1.
Once the leftmost tower is created and connected to other towers, the algorithm returns the root. During
this process, the ranks and hashes of each new node are also calculated. Thus, the build algorithm
not only can work for a regular skip list, but can also work for authenticated and rank-based versions,
such as FlexList or RBASL, as well. Note that this build algorithm creates an optimal skip list without
unnecessary nodes and links, as n insertions with our optimal insertion algorithm would have built. The
full algorithm, as well as its detailed explanation using Figure 8, is provided in the Appendix.

Figure 8: buildFlexList example.
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Figure 9: A build skip list distributed to 3 cores.

4.4 Parallel Build FlexList
However unintuitive, we can also parallelize the build process of even an authenticated data structure,
such as FlexList. Figure 9 shows the three-core parallel construction of the FlexList (example in Figure
8). The approach consists of three steps: First, the tasks are distributed to threads and FlexLists for
subsets of blocks are generated. Second, to unify them into a single FlexList, all the roots are connected
together with links (c1 is connected to r1, eliminating l1, and r1 is connected to r2, eliminating l2) and
new rank values of the modified roots (r1 and c1) are calculated. Third, FlexList remove function is used
to remove the unnecessary sentinels directly below the roots of the sub-FlexLists that remain in between
each part (remove indices 360 = c1.rank−r2.rank and 180 = c1.rank−r1.rank). In the example, the
remove operation generates v12 and v7 of Figure 8 and connects the remaining nodes to them, and rank
values on the search paths of c2, c6, c7, c11 are recalculated after the removal of the unnecessary sentinel
nodes. As a result, all the nodes of the sub-FlexLists are connected to their levels on the FlexList, and
the same FlexList of Figure 8 is obtained efficiently in a parallel manner.

5 FlexList-based Dynamic Secure Cloud Storage

Figure 10: Client Server interactions in FlexDPDP.

In this section, we describe the application of FlexList to integrity check in secure cloud storage
systems according to the DPDP model [25]. We call the resulting scheme FlexDPDP that includes
the new capabilities and efficiency gains discussed in Section 4. The FlexDPDP uses homomorphic
verifiable tags [5, 4, 25]: multiple tags can be combined to obtain a single tag that corresponds to a
single combined block. Tags are small compared to data blocks, enabling storage in main memory.
Authenticity of the skip list guarantees integrity of tags, and tags protect the integrity of the data blocks.

The DPDP model has two main parties: the client and the server. The cloud server stores a file on
behalf of the client. It has been shown that an RBASL can be created on the outsourced file to provide
proofs of integrity as depicted in Figure 10. The following algorithms are used:
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• Challenge is run by the client to request a proof of integrity for randomly selected blocks.
• Prove is run by the server in response to a challenge, to generate the proof of possession.
• V erify is run by the client upon receipt of the proof. A return value of accept means the file is

kept intact by the server.
• prepareUpdate is run by the client when she changes some part of her data. The client sends the

update information to the server.
• performUpdate is run by the server in response to an update request to perform the update and

prove that the update is performed reliably.
• verifyUpdate is run by the client upon receipt of the proof of the update, and it returns accept

(and updates her meta data) if the update was performed reliably.

5.1 Preliminaries
Before providing optimized proof generation and verification algorithms, we introduce essential meth-
ods used in our algorithms to determine intersection nodes, search multiple nodes, and update rank
values. Table 5 in the Appendix shows the notation used in this section.
Proof node is the building block of a proof. It contains level, data length (if level is 0), rank, hash, and
three boolean values (rgtOrDwn, end flag, and intersection flag). Level and rank values belong to the
actual node for which the proof node is generated. The hash is the hash value of the neighbor node that
is not on the search path. There are two scenarios for setting hash and rgtOrDwn values:

1. When the search path follows the below link of the node in consideration, the hash of the corre-
sponding proof node is set to the hash of the current node’s after (since that part is not on the
search path) and its rgtOrDwn value is set to dwn (since the search path continues down).

2. When the search path follows the after link of the node in consideration, the hash of the corre-
sponding proof node is set to the hash of the current node’s below (since that part is not on the
search path) and its rgtOrDwn value is set to rgt (since the search path continues right).

isIntersection: This function is used in searchMulti (defined later) for checking whether or not a given
node is an intersection. It takes current node, the challenged indices, two indices (which will be checked
for intersection, in ascending order), and the rank state (to know which sub skip list is considered). A
node is an intersection point of proof paths of two searched indices when the first index can be found
following the below link and the second index is found by following the after link of that node. The
isIntersection method not only returns true or false according to this criteria, but also helps the proof
generation by finding the next intersection in the challenge vector C. In practice, among the two indices
given to this function, the first one will be the index we are currently searching for (to create a proof),
and the second one will be the index of some other challenged index. Note that this method directly
returns false if there is only one challenged index, or if the first and last indices are not intersecting at
the given node.
searchMulti (Algorithm A.11): This algorithm is used in the genMultiProof algorithm (to generate a
combined proof for multiple challenged indices, see Section 5.2) to generate the proof path for multiple
nodes without unnecessary repetitions of the proof nodes. The idea is to search for the indices, create
a proof node for every node on the search path, and note down any intersections. Figure 11, where the
node at the index 450 is challenged, demonstrates an example of how the algorithm works. The aim is
to provide the proof path for the challenged node. We assume that in the search, the current node cn
starts at the root (w1 in the example). Therefore, initially the search index i is 450, the proof vector P
and intersection stack ts are empty.

For w1, a proof node p is generated using scenario (1) (see proof node description), where p.hash
is set to v1.hash and p.rgtOrDwn is set to dwn. For w2, the proof node p is created as described in
scenario (2) above, where p.hash is set to v2.hash and p.rgtOrDwn is set to rgt. The proof node for
w3 is created using scenario (2). For w4 and w5, proof nodes are generated as in scenario (1). The last
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Figure 11: Proof path for challenged index 450 in a FlexList.

node c1 is the challenged leaf node, and the proof node for this node is also created as in scenario (1).
Note that in the second, third, and fifth iterations of the while loop, the current node is moved to a sub
skip list. Setting the end flag and collecting the data length, as well as setting the intersection flag and
saving the rank state are crucial for generation of proof for multiple blocks. The full algorithm is in the
Appendix.
updateRankSum: This algorithm, used in the verifyMultiProof algorithm (to verify the proof of multi-
ple challenged indices, see Section 5.2), is given the rank difference as input, the verify challenge vector
V , and indices start and end (on V ). The output is a modified version V ′ of the verify challenge vector.
The procedure is called when there is a transition from one sub skip list to another (larger one, since
verification is bottom-up and right-to-left). The method updates entries starting from index start to
index end by rank difference, where rank difference is the size of the larger sub skip list minus the size
of the smaller sub skip list.
Tag calculation and the Block Sum: We use an RSA group Z∗N , where N = pq is the product of two
large prime numbers, and g is a high-order element in Z∗N . It is important that the server does not know
p and q. The tag t of a block m is computed as t = gm mod N . The block sum is computed as

M =
|C|∑
i=0

aimCi where C is the challenge vector containing block indices and ai is the random value

associated with the ith challenge index. These are directly taken from the original DPDP [25].

5.2 Handling Multiple Challenges at Once
Client-server interaction in secure cloud storage (Figure 10) starts with the client pre-processing her
data (creating a FlexList for the file and calculating tags for each block of the file). The client sends
the random seed she used for generating the FlexList to the server along with the data, the tags, and
the public key (g,N ) used for computing the tags. Using the seed, the server constructs a FlexList over
the blocks of data and assigns tags to leaf-level nodes. Note that the client may request the root value
calculated by the server to verify that the server constructed the correct FlexList over the file. When the
client checks and verifies that the hash of the root value is the same as the one she had calculated, she
may safely remove her data and the FlexList. The client keeps the hash of the root of the FlexList as
meta data for later use in the proof verification mechanism.

To challenge the server, the client generates two pseudo-random generator seeds, one that will gen-
erate the challenge vector C of random indices for bytes to be challenged, and another that will generate
random coefficients ai to be used in the block sum [4]. The client sends these two seeds to the server as
the challenge, and keeps them for verification of the server’s response.

5.2.1 Proof Generation

genMultiProof (Algorithm A.12): Upon receipt of the random seeds from the client, the server gen-
erates the challenge vector C and random values ai according to the pseudo-random generators, and
runs the genMultiProof algorithm in order to get tags, file blocks, and the proof path for the challenged
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indices. The algorithm searches for the leaf node of each challenged index and stores all nodes across
the search path in the proof vector. However, when multiple blocks are challenged (as in PDP [4] and
DPDP [25]), if we start from the root for each challenged block, there will be a lot of replicated proof
nodes along these multiple search paths. In the example of Figure 12, if the proofs were generated
individually for each challenged index, w1, w2, and w3 would be replicated 4 times (because they are
common to the proof path of each challenged index), w4 and w5 would be replicated 3 times (common
for all challenged ones except c1), and c3 would be replicated 2 times. To overcome this problem, we
save the state at each intersection node. For example, in Figure 12, the algorithm starts traversing from
the root (w1), searching for the leftmost challenged node (c1). Next, the algorithm continues searching
for the next challenged node (c2), but starting from w3 (which is the intersection node for c1 and c2)
instead of w1. The proof generation for c3 will continue from w5 (the intersection node for c2 and c3),
and so on.

In our optimal proof, only one proof node is generated for each node on any proof path. This is
beneficial in terms of not only space but also time (see Section 7), and hence is much better than first
generating individual proofs and then performing a replica-removing merge or applying compression.
Correspondingly, the verification time of the client is also greatly reduced since she computes fewer
hash values. The full algorithm and its detailed explanation using Figure 12 are in the Appendix. At the
end of the genMultiProof algorithm, the proof vector (Figure 13), the tag vector, and the block sum are
sent to the client for verification.

Figure 12: Multiple blocks are challenged in a FlexList.

Figure 13: Proof vector for Fig-
ure 12 example. “I” denotes in-
tersection, “E” denotes end, and
data length is included only for
end nodes.

5.2.2 Verification

verifyMultiProof (Algorithm A.13): Recall that the client keeps random seeds used for the challenge,
and generates the challenge vector C and random values ai according to these seeds. If the server was
honest, these will contain the same values as the ones the server generated for preparing the proofs.
There are two steps in the verification process: tag verification and FlexList verification.
Tag verification is done as follows: Upon receipt of the tag vector T and the block sum M , the client

calculates tag =
|C|∏
i=0

T ai
i mod N and accepts iff tag = gM mod N . This part proves that the file

blocks match the tags sent (as in PDP [4] and DPDP [25]). Next, FlexList verification checks that the
tags remain intact. Thus, together they prove file integrity.
FlexList verification involves calculation of hashes for the proof vector P (Figure 13) treated as a
stack. The calculation of hashes is done in the reverse order of the proof generation in genMultiProof
algorithm. Therefore, the calculations are performed in the following order: c4, w6, c3, c2, w5, . . .
until the hash value for the root (the last element in the stack) is computed. Observe that to compute
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the hash value for w5, for example, the hash values for c3 and c2 are needed, and this reverse (top-
down) ordering always satisfies these dependencies. Note also that this top-down ordering on the stack
corresponds to a bottom-up and right-to-left traverse in a FlexList, and as such, the hash calculations
respect all dependencies, and no secondary pass over the proof vector is necessary. When the hash for
the last proof node of the proof path is calculated (w1), it is compared with the meta data that the client
possesses. Detailed explanation is in the Appendix.

This check makes sure that the nodes, whose proofs were sent, are indeed in the FlexList that corre-
sponds to the meta data stored at the client. But the client also has to make sure that the server indeed
proved storage of the data that she challenged. The server may have lost those blocks but may instead
be proving storage of some other blocks at different indices. To prevent this, the verify challenge vector,
which contains the start indices of the challenged nodes (150, 300, 450, and 460 in our example), is gen-
erated by the rank values included in the proof vector (in lines 11, 23, and 27 of Algorithm A.13). With
the start indices and the lengths of the challenged nodes given, we check if each challenged index in C
is included in a node that the proof is generated for (as shown in line 32). For instance, we challenged
index 170. From the proof, we observed that c1 starts from index 150 and is of length 80. We check if
0 ≤ 170 − 150 < 80. Such a check is performed for each challenged index and each proof node with
an end mark. The algorithm is provided in the Appendix.

5.3 Handling Multiple Updates at Once
5.3.1 Proving Variable-size Multi-block Updates

We investigated the verifiable updates and inferred that the majority of the time spent is for the hash
calculations in each update. When a client alters her data and sends it to the server, she generates a
vector of updates (U ) out of a diff algorithm, which is used to show the changes between the current and
the former versions of a file.

An update information u ∈ U , includes an index i, and (if insert or modify) a block and a tag
value. Furthermore, the updates on a FlexList usually consist of a series of modify operations followed
by either insert or remove operations, all to adjacent nodes. This nature of the update operations makes
single updates inefficient since they keep calculating the hash values of the same nodes over and over
again. To overcome this problem, we propose dividing the task into two: doing a series of updates
without the hash calculations, and then calculating all affected nodes’ hash values at once, where
affected means that at least an input of the hash calculation of that node has changed. The multiUpdate
(Algorithm A.14) gets a FlexList and a vector U of updates, and produces a proof vector P , a tag vector
T , a block sum M , and the new hash value newRootHash of the root.

We illustrate handling multiple updates with an example. Consider a multiUpdate called on the
FlexList of Figure 3 and a consecutive modify and insert happen to indices 50 and 110 respectively
(insert level is 2). When the updates are done without hash calculations, the resulting FlexList looks
like the one in Figure 14. Since the tag value of c6 has changed and a new node added between c6 and
c7, all the nodes getting affected should have a hash recalculation. If we first perform the insert, we
need to calculate hashes of n3, n2, c6, n1, c2 and c1. Later, when we do the modification to c6 we need
to recalculate hashes of nodes c6, n1, c2 and c1. There are 6 different nodes to recalculate hashes of,
but we do 10 hash calculations. Instead, we propose performing the insert and modify operations and
then calculating the necessary hash values without any wasted effort. The detailed algorithms are in the
Appendix.

5.3.2 Verifying Variable-size Multi-block Updates

When the multiUpdate algorithm is used at the server side of the FlexDPDP protocol, it produces a
proof vector, in which all affected nodes are included, and a hash value, which corresponds to the root
of the FlexList after all of the update operations are performed. Our solution to verify such an update
consists of four parts. First, the multi proof is verified via both FlexList verification and tag verification.
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Figure 14: Insert and remove examples on FlexList.
Figure 15: An output of a multi-
Proof algorithm.

Second, we construct a temporary FlexList that contains the parts necessary for the updates. Third,
we do the updates as they are, at the client side. The resulting temporary FlexList has the root of the
original FlexList at the server side after performing all updates correctly. Fourth and last, we check if
the new root we calculated is the same as the one sent by the server. If they are the same, we accept and
update the meta data kept at the client.

Constructing a temporary FlexList out of a multi proof: Building a temporary FlexList is giving
the client the opportunity to use the regular FlexList methods to do the necessary changes to calculate
the new root. Dummy nodes that we use below are the nodes that have some values set and are never
subject to recalculation.

Figure 16: The temporary FlexList generated
out of the proof vector in Figure 15. Note that
node names are the same with Figure 3.

We explain Algorithm A.17 using the proof vector
given in Figure 15. The output of the algorithm given
the proof vector is the temporary FlexList in Figure 16.
First, the algorithm takes the proof node for c1, gen-
erates the root using its values and adds the dummy
after, with the hash value (of c16) stored in it, and the
nodes are connected to each other depending on their
attributes. The proof node for c2 is used to add node
c2 to the below of c1 and the c2’s dummy node is con-
nected to its below with rank value of 50, calculated as
rank of c2 minus rank of c5. The next iteration sets c5
as c2’s after and c5’s dummy node c10 is added to c5’s
after. The next step is to add c6 to the below of c5. c6
is both an end node and an intersection node, therefore
we set its tag (from the tag vector) and its length val-

ues. Then we attach c7 and calculate its length value since it is not in the proof vector generated by
genMultiProof (but we have the necessary information: the rank of c7 and the rank of c8). Next, we add
the node for c8, and set its length value from the proof node and its tag value from the tag vector. Last,
we do the same to c9 as c8. The algorithm outputs the root of the new temporary FlexList.

Verification: Recall that U is the list of updates generated by the client. An update information
u ∈ U , includes an index i, and if the update is an insertion or modification, a block and a tag value.
The client calls verifyMultiUpdate (Algorithm A.18) with its meta data and the outputs P , T , M of
multiUpdate from the server. If verifyMultiProof returns accept, buildTemporaryFlexList is called with
the proof vector P . The resulting temporary FlexList is ready to handle updates. The updates are
performed without the hash calculations first, and then all the necessary hashes are calculated at once.
(Note that ‘without hash calculations’ does not mean ‘without rank calculations’. They are necessary
and less time consuming.) Last, we check if the resulting hash of the root of our temporary FlexList is
equal to the one sent by the server. If they are the same, we accept and update the client’s meta data.
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6 Security Analysis
In this section, we prove security of FlexDPDP, and emphasize the importance of authenticating data
length values. Note that within a proof vector, all nodes that are marked with the end flag E contain
the length of their associated data. These values are used to check if the server indeed sent the proof
of the blocks corresponding to the challenged indices. A careless implementation may not consider the
authentication of the length values. To demonstrate the consequence of not authenticating the length
values, we use Figure 12 and Figure 13 as an example.

Suppose that the client challenges the server on the indices {170, 400, 500, 690} that correspond
to nodes c1, v4, c3, and c4, respectively. Assume that the server finds out that he does not possess v4
anymore, and therefore, instead of that node, he tries to deceive the client by sending a proof for c2. The
proof vector will be the one illustrated in Figure 13 with a slight change done to deceive the client. The
change is done to the fourth entry from the top (the one corresponding to c2): Instead of the original
length 80, the server puts 105 as the length of c2. The verification algorithm (without authenticated
length values) at the client side will accept this fake proof as follows:

• The block sum value and the tags get verified since both are prepared using genuine tags and
blocks of the actual nodes. The client cannot realize that the data of c2 counted in the block sum
is not 105 bytes, but 80 bytes instead. This is because the largest challenged data (the data of c4
of length 110 in our example) hides the length of the data of c2.

• Since the proof vector contains genuine nodes (though not necessarily all the challenged ones),
when the client uses verifyMultiProof algorithm on the proof vector from Figure 13, the hash
check on line 32 of Algorithm A.13 will be passed.

• The client also checks that the proven nodes are the challenged ones by comparing the challenge
indices with the reconstructed indices by “∀a, 0 ≤ a ≤ n , 0 ≤ Ca −Va < endnodesn−a.length”
(on line 32 of Algorithm A.13). This check will also be passed because:

– c1 is claimed to start at index 150 and contains 80 bytes, and hence includes the challenged
index 170 (verified as 0 < 170− 150 < 80).

– c2 is claimed to start at index 300 and contains 105 bytes, and hence includes the challenged
index 400 (verified as 0 < 400− 300 < 105).

– c3 is claimed to start at index 450 and contains 100 bytes, and hence includes the challenged
index 500 (verified as 0 < 500− 450 < 100).

– c4 is claimed to start at index 640 and contains 110 bytes, and hence includes the challenged
index 690 (verified as 0 < 690− 640 < 110).

There are two possible solutions: either include the authenticated rank values of the right neighbors
of the end nodes in the proofs, or use the length of the associated data in the hash calculation of the
leaf nodes. We choose the second solution, which is authenticating the length values, since adding the
neighbor node to the proof vector also adds a tag and a hash value, for each challenged node, to the
communication cost.

Lemma 1. If there exists a collision resistant hash function family, FlexList is an authenticated dictio-
nary.

Proof. The only difference between FlexList and RBASL is the calculation of the rank values at the
leaf levels. All rank values, which are used in the calculation of the start indices of the challenged
nodes, are used in hash calculations as well. Therefore, both length and rank values contribute to the
calculation of the hash value of the root. To deceive the client, the adversary should fake the rank or
length value of at least one of the proof nodes. By Theorem 1 of [45], if the adversary sends a verifying
proof vector for any node other than the challenged ones, we can break the collision resistance of the
hash function, using a simple reduction. The reduction will keep a local copy of the data structure, and
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if the adversary manages to output a proof for something that is different from the local copy, then the
reduction would output the adversary’s output together with the non-matching part in the local copy as
the collision. Since previous papers on authenticated data structures provided similar proofs, we do not
extend our discussion. Therefore, we conclude that FlexList protects the integrity of the tags and data
lengths associated with the leaf-level nodes.

The tag verification protects the integrity of the data itself, based on the factoring assumption, as
shown by DPDP [25]. Combining this with Lemma 1 concludes security of FlexDPDP.

Theorem 1. If the factoring problem is hard and a collision resistant hash function family exists, then
FlexDPDP is secure.

Proof. Consider the proof of Theorem A.6 in [25]. Replacing Lemma A.1 in [25] used in that proof
with our Lemma 1 yields an identical challenger, and shows the validity of our theorem.

7 Performance Analysis
We developed an implementation of an optimized FlexList (on top of our optimized skip list and authen-
ticated skip list implementations3). We then used this optimized FlexList implementation for developing
FlexDPDP secure cloud storage system with multi-prove, multi-verify, and multi-update capabilities. We
used C++ with the aid of the Cashlib library [41, 15] for cryptography and the Boost Asio library [13]
for network programming. The local experiments were conducted on a 64-bit machine possessing 4 In-
tel(R) Xeon(R) CPU E5-2640 @ 2.50GHz CPU (only one core is active, except for parallel build tests),
16GB of memory and 16MB of L2 level cache, running Ubuntu 12.04 LTS. As security parameters, we
used 1024-bit RSA modulus, 80-bit random numbers, and SHA-1 hash function; overall resulting in an
expected security of 80-bits. All our results are the average of 10 runs. The tests include I/O access
time, where each block of the file is kept on the hard disk drive separately, unless stated otherwise.
The size of a FlexList is suitable to keep it in RAM, together with the tags but without the file blocks.

For energy efficiency tests, we used Watts up Pro meter, which measures the total energy consump-
tion of the connected device. We conducted the tests and took their energy consumption measurements.
Then, we measured the average energy cost for the idle time when no tests were taking place. The
difference between these two measurements were used for the results.

In this section, our extensive analysis results of FlexList and FlexDPDP performances, deployment
on the PlanetLab distributed platform, comparison with DPDP and static cloud storage on the PlanetLab
are discussed.

7.1 Core FlexList Algorithm Performance
7.1.1 Unnecessary Nodes and Links Optimization

A core optimization in a FlexList is done in terms of the structure. Our optimization of removing
unnecessary links and nodes results in 50% fewer nodes and links on top of the leaf nodes, which are
always necessary since they keep the file blocks.
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Figure 17: The number of nodes and links used on
top of leaf level nodes, before and after optimiza-
tion.

Figure 17 shows the number of links and
nodes used before and after optimization. The ex-
pected number of nodes in a regular skip list is 2n
(where n represents the number of blocks): n leaf
nodes and n non-leaf nodes [49]. As described in
Section 3, each non-leaf node makes any left con-
nection below its level unnecessary. Therefore,
in expectation, half of the non-leaf level after

3Recall that RBASL is now a special case of FlexList, and thus needs no separate implementation.
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links are unnecessary. Since there are n/2 non-
leaf level unnecessary links, in expectation, this
means that there are n/2 non-leaf level unnec-
essary nodes as well, according to the unneces-
sary node definition (Section 3). Hence, there are
n − n/2 = n/2 non-leaf necessary nodes. Since
each necessary node has 2 links, in total there are
2 ∗ n/2 = n necessary links above the leaf level.
That is why there is an overlap between the stan-
dard number of non-leaf nodes (n) and the optimal number of the non-leaf links (n) in Figure 17.
Therefore, with this optimization we eliminated approximately 50% of all nodes and links above the
leaf level.

7.1.2 buildFlexList Performance
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Figure 18: Time and energy efficiency ratios of our
buildFlexList algorithm against insertions.

We presented a novel algorithm for building a
FlexListefficiently. Instead of performing n inser-
tions that would require O(n log n) total time, our
approach only requires O(n) time in total, assum-
ing the underlying data is already sorted, which
is the case in the cloud storage scenario. Fig-
ure 18 demonstrates the energy consumption and
time ratios. The time ratio is calculated by divid-
ing the time spent for the building the FlexList
via insertion (in sorted order) by the time needed
by the buildFlexList algorithm. The same equa-
tion is applied to the energy consumption ratio
calculation. Note that even though the insertions
are already in sorted order, the regular insertion
algorithm cannot benefit from this fact, whereas
our novel buildFlexList algorithm is the first of its
kind to make us of this fact. In these energy and
time ratio experiments, we do not take into account the disk access time, therefore there is no delay for
I/O switching. As expected, buildFlexList algorithm logarithmically outperforms the regular insertion
method. Moreover, in our buildFlexList algorithm, the expensive hash calculations are performed only
once for each node in the FlexList. As an example, the buildFlexList algorithm reduced the time to build
a FlexList for a file of size 400MB with 200000 blocks from 12 seconds to 2.3 seconds and for a file of
size 4GB with 2000000 blocks from 128 seconds to 23 seconds.

7.1.3 Parallel buildFlexList Performance

Figure 19 shows the parallel buildFlexList execution time as a function of the number of cores employed.
The case of one core corresponds to the regular buildFlexList function. From 2 cores to 24 cores, the
time spent by our parallel buildFlexList function is measured. Notice the speed up where parallel build
reduces the time to build a FlexList of 4 million blocks from 240 seconds to 30 seconds on 12 cores
(including I/O time). The speedup values are reported in Figure 20 where T stands for the time taken
when a single core is used, and Tp stands for the time taken with p number of cores used. The more
sub-tasks created, the more time is required to divide the big task into parts and to combine them. We see
that a FlexList of 100000 blocks does not get improved as much, since the sub tasks are getting smaller
and the overhead of thread generation starts to surpass the gain of parallel operations. Starting from 12

19



cores, we observe this side effect for all sizes. For 500000 blocks (e.g., 1GB file) and larger FlexLists,
speed ups of 6 and 7.7 are observed on 8 and 12 cores, respectively.

Figure 19: Time spent while building a FlexList
from scratch.

Figure 20: Speedup values of buildFlexList func-
tion with multiple cores.

7.2 FlexDPDP Performance
7.2.1 Effect of Block Size

Figure 21 shows the server proof generation time for FlexDPDP as a function of the block size for
different file sizes of 16MB, 160MB, and 1600MB. The number of challenged blocks is fixed at 460 as
suggested in PDP [4]. As shown in the figure, with the increase in block size, the time required for the
proof generation increases, since with a higher block size, the block sum generation takes more time.
However, with extremely small block sizes, the number of nodes in the FlexList become so large that
it dominates the proof generation time. Since 2KB block size worked best for various file sizes, our
other tests employ 2KB blocks. These 2KB blocks are kept on the hard disk drive; on the other hand,
the FlexList nodes are much smaller and are kept in RAM. While we observed that the buildFlexList
algorithm runs faster with bigger block sizes (since there will be fewer blocks), the creation of a FlexList
happens only once. On the other hand, the proof generation algorithm runs periodically depending on
the client; therefore, we chose to optimize our block size for its running time. Note that a FlexList can
handle varying block sizes, yet, there is an average target block size even in a FlexList. Without such a
target average size, it is possible to make a huge update efficiently once, but then later smaller updates
will keep splitting that huge chunk, becoming inefficient themselves. Thus, 2KB can be interpreted as
the average block size.

7.2.2 Multi-Proof Generation Performance
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Figure 21: Server proof generation time for 460 ran-
dom challenges as a function of the block size for
various file sizes.

The performance of our optimized implementa-
tion of the proof generation mechanism is eval-
uated in terms of communication and computa-
tion. We take into consideration the case where
the client wishes to detect, with more than 99%
probability, if more than 1% of her 1GB data is
corrupted, by challenging 460 blocks; the same
scenario employed in PDP and DPDP [4, 25]. In
the experiments, we used a FlexList with 500,000
nodes, where the block size is 2KB. Figure 22

20



shows the ratio of the unoptimized proofs over our
optimized multi-proofs in terms of the FlexList
proof size and computation, as a function of the
number of challenged nodes. The unoptimized
proofs correspond to proving each block sepa-
rately, instead of using our genMultiProof algo-
rithm for proving all of them at once. Our multi-
proof optimization results in 40% computation
and 50% communication gains, corresponding to FlexList proofs being up to 1.75 times as fast and
2 times as small.

In Figure 22, the gains in a FlexDPDP proof size and computation time are also shown. With our
optimizations, we observe gains of about 35% and 40% for the overall computation and communi-
cation, respectively, corresponding to proofs being up to 1.60 times as fast and 1.75 times as small.
The whole proof consists of 213KB FlexList proof, 57KB of tags, and 2KB of block sum. Thus, for 460
challenges as suggested by PDP [4], we obtain a decrease in total proof size from 485KB to 272KB,
and the computation time is reduced from 19ms to 12.5ms by employing our genMultiProof algorithm.

Note that, we could have employed a compression algorithm (e.g., zip) on top of the unoptimized
proofs to eliminate duplicates in the proof, but our algorithm also provides efficiency gains in terms of
computation (whereas computing an unoptimized proof and then compressing would require even more
time at both the server and client sides). Yet, if using the bandwidth efficiently is the main goal, we
suggest applying compression on top of our optimal proof.

We further tested the performance of the genMultiProof algorithm in terms of energy efficiency. The
time and energy ratios for the genMultiProof algorithm are shown in Figure 23. We tested the algorithm
for different file sizes varying from 4MB to 4GB (where the block size is 2KB, and thus the number
of blocks increases with the file size). In the constant scenario, we applied the same challenge size of
460 for all file sizes. Our results show a relative decline in the performance of the genMultiProof as
the number of blocks in the FlexList increases. Because, as the number of blocks in the FlexList grows,
the number of repeated proof nodes in the proof decreases (the constant number of challenged indices
are distributed further away, on average, with fewer overlapping nodes along their search paths). In the
proportional scenario, number of challenges is determined proportional to the number of blocks in the
file. 5, 46, and 460 challenges are used for 20000, 200000, and 2000000 blocks, respectively. The results
show a relative incline in the performance of genMultiProof for the proportional number of challenges.
The algorithm provides an efficiency gain in the computation time in comparison to the generating each
proof individually. We also observed that the energy efficiency closely follows the computational gains.

7.2.3 Server-Side Multi-Update Operations

Results for the core FlexList methods (insert, remove, modify) with and without the hash calculations,
for various number of blocks, are shown in Figure 24. Even with the I/O time, the operations with the
hash calculations take 10 times more than the simple operations on a 4GB file (i.e., 2000000 nodes).
The hash calculations in an update take 90% of the time spent for an update operation. Therefore, doing
hash calculations only once for multiple updates in the performMultiUpdate algorithm provides 25%
time and space efficiency on the verifiable update operations when the update is 20KB, and this
gain increases up to 35% with 200KB updates.

The time spent for an update at the server side for various size of updates is shown in Figure 25. Each
update is an even mix of modify, insert, and remove operations. If the update locality is high, meaning
the updates are on consecutive blocks (a diff operation generates several modifies to consecutive blocks
followed by a series of remove if the new data is shorter than the old data, or a series of inserts otherwise),
on a FlexList for a 1GB file, the server time for 300 consecutive update operations (a 600KB update)
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Figure 22: Performance gain graph (460 single
proofs / 1 multi proof for 460 challenges).
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Figure 23: Time and energy ratios of the genMul-
tiProof algorithm.

is decreased from 53ms to 13ms.
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Figure 24: Time spent for an update operation in
FlexList with and without hash calculations.
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Figure 25: Time spent on performing multi up-
dates against series of single updates.

7.2.4 Client-Side Multi-Update Operations
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Figure 26: MultiVerify of an update against stan-
dard verify operations.

For the server to use the multiUpdate algorithm,
the client should be able to verify multiple up-
dates at once. Otherwise, each single update veri-
fication would require a root hash value after that
specific update, and thus all hash values on the
search path of the update should be re-calculated
each time. Also, each update proof should include
a FlexList proof. Verifying multiple updates at
once not only diminishes the proof size but also
provides better client-side performance.

Figure 26 shows that a verifyMultiUpdate op-
eration is faster at the client side when compared
to verifying all the proofs one by one. We tested
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two scenarios: one is for the updates randomly
distributed along the FlexList, and the other is for
the updates with high locality. The client verifica-
tion time is highly improved. For instance, with
a 1GB file and a 300KB consecutive update, ver-
ification at the client side was reduced from 45ms to less than 5ms. With random updates, the
multi-verification is still 2 times faster.

7.3 Real Usage Performance Analysis
We deployed the FlexDPDP implementation on the world-wide network testbed PlanetLab, and chose
a PlanetLab node in Germany4, which has two Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz (IC2), and
48Mbit upload and 80Mbit download speed, as the server. Our tests are on a 1GB file, which is divided
into blocks of 2KB, having 500000 nodes (for each client). The throughput is defined as the number of
queries the server can reply in a second. Our results are the average of 50 runs on the PlanetLab with
randomly chosen 50 clients from all over Europe.

7.3.1 Challenge queries on the PlanetLab
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Figure 27: Clients challenging their data. Two lines
present: first, server throughput in count per sec-
ond and second, whole time for a challenge query
of FlexDPDP, in ms.

As shown in Figure 27, we measured two metrics:
the whole time spent for a challenge-proof inter-
action at the client side and the throughput of the
server. The maximum throughput of the server
is around 21 multi-proofs per second. When the
server limit is reached, we observe a slowdown
on the client side where the response time in-
creases from around 500 ms to 1250 ms. Given
that preparing a proof of size 460 using the IC2
processor takes 40ms using genMultiProof on a
single core, we conclude that the bottleneck is not
the processing power. The challenge queries are
solely a seed, thus the download speed is not the
bottleneck either. A multi-proof for 460 blocks
has an average size of 272KB; therefore, to serve
21 clients in a second, a server needs 47Mbit up-
load speed, which seems to be the bottleneck in
this experiment. The more we increase the upload speed, the more clients the server can serve.

7.3.2 Update queries on the PlanetLab

We perform our analysis using the same metrics, the throughput of the server (Figure 28) and the time
spent at the client side (Figure 29), for updates of size∼20KB and∼200KB. We test the behavior of the
system by varying the query frequency, the update size, and the update type (consecutive or randomly
selected blocks). Table 1 shows the measurements for each update type.

As shown in Figure 28, the server can reply ∼45 updates of size 20KB each and ∼8 updates of size
200KB each per second. Results in Figure 29 also approve that the server is loaded by an increase in time
of a client getting served. From Figure 27, we conclude that the bottleneck for replying update queries
is not the upload speed of the server, since a randomly distributed update of size 200KB needs a 70KB
proof, and 8 proofs per second use just 4.5Mbit of the upload bandwidth, and a randomly distributed
update of size 20KB needs a proof of size 11KB, and 45 proofs per second use only 4Mbit of upload

4planetlab1.informatik.uni-wuerzburg.de
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bandwidth. Table 1 shows the proof generation times at the server side and the proof sizes. 30ms per
200KB random update operation is required, so a server may answer up to 110-120 queries per second
with the IC2 processor. Similarly, 10ms per 20KB random update operation is required, thus a server
can reply up to 300 such queries per second. Therefore, the bottleneck is not the processing power
either. Eventually the amount of queries of a size a server can accept per second is limited, even though
the download bandwidth does not seem to be loaded up. But, note that the download speed is checked
with a single source and a continuous connection. When a server keeps accepting new connections, the
end result is different. This was not a constraint in answering challenge queries since a challenge is
barely a pseudorandom seed to show the server which blocks are challenged. In our setting, there is one
thread at the server side which accepts a query and creates a thread to reply it. We conclude that the
bottleneck is the server query acceptance rate of our implementation. These results indicate that with a
distributed and replicated server system (e.g., [28]), a server using our FlexDPDP scheme may achieve
better throughput.
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Figure 28: Server throughput versus the fre-
quency of the client queries.
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Figure 29: A client’s total time spent for an update
query (from sending the update till verifying the
proof).

Update size and type Server proof generation time Corresponding proof size
200KB (100 blocks) randomly dist. 30ms 70KB
20KB (10 blocks) randomly dist. 10ms 11KB
200KB (100 blocks) consecutive 7ms 17KB
20KB (10 blocks) consecutive 6ms 4KB

Table 1: Proof time and size for various type of updates.

7.3.3 Update queries on real SVN traces

We have conducted an analysis on our SVN server, where there exist 350MB of data that we have been
using for 2 years. We examined a sequence of 627 commits and provide results for an average usage
of a commit function by means of the update locality, the update size being sent through the network,
and the updated number of blocks.

We consider the directory hierarchy proposed in [25], where the idea is to set the root of each file’s
FlexList as the leaf nodes of a dictionary used to organize the files. More specifically, we can use our
optimized authenticated skip list implementation as the dictionary whose leaves are the roots of the
FlexLists, one per file in our SVN repository. We observe that the update locality of the commits is very
high. More than 99% of the updates in a single commit occur in the same folder, and thus do not affect
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most parts of the directory. Moreover, 27% of the updates are consecutive block updates on a single
field of a single file.

With each commit, an average update of size 77KB is sent, where only 2.7% of all commits have
size greater than 200KB and a huge majority (85%) of all commits have size less than 20KB. These
sizes refer to the amounts sent through the network. Besides, an analysis on 3 public SVN repositories
was conducted by Erway et al. [25], indicating that the average update size is 28KB. This is the reason
that in our experiments above on the PlanetLab we chose 20KB (to show general usage) and 200KB
(to show big commits) as the size sent for a commit call. The average number of blocks affected per
commit provided in [25] is 13, and is 57.7 in our SVN repository. Both show the necessity of efficient
multiple update operations. We also observe the size variation of the commits and see that the greatest
common divisor of the size of all commits is 1 byte, as expected. Thus we conclude that fixed block
sized rank-based authenticated skip list is not applicable to such a cloud storage scenario.

7.4 Comparison with DPDP
As explained before, since the original DPDP scheme of Erway et al. [25] uses block-based RBASL, it
only supports working with a fixed block size.5 However, our analysis demonstrates that the block size
common to all updates on a real SVN deployment is 1 byte, which is an impractical block size. For
example, if a block size of 1 byte is used for a 1GB file, the corresponding RBASL will have more than
1 billion blocks. But, remember that FlexList has a flexible block size. Therefore, if the initial block
size is set as, for example, 2KB, then the corresponding FlexList will have only 500 thousand blocks.
Thus, it is clear that the RBASL-based DPDP will be much slower than FlexDPDP.

On the other hand, using the same 2KB block size with block-based RBASL would mean that either
the updates will need to be padded, or to keep the block size fixed, an updated block will affect all
the other blocks to the right of it. If we consider the second option, it is obvious that a block-based
RBASL will be, on average, n/2 times slower than a FlexList with the same number of blocks.
For n = 500000, this is an intolerable performance loss.6 On the other hand, if we consider the first
option, then such a DPDP scheme can only be used if the client also keeps a local copy of the RBASL,
and keeps it up-to-date with each update, wasting both space and time. Such a copy is necessary, since
otherwise the client has no way of knowing, before contacting the server, which block contains the
byte that it wants. Since most diff algorithms are byte-based, if no local RBASL is kept, each update
would require first obtaining the byte-to-block conversion from the server together with its proof, and
then performing an update with the padding. There are known problems with padding, including the
extra space requirement. Furthermore, the use of padding in this cloud storage scenario, at the very
least, duplicates the computation and communication done for updates, as explained above. Note that,
with flexible block size, FlexList never faces such problems, since a FlexList proof already contains
authenticated length values of the blocks, and the client can verify that the byte indices output by the
diff algorithm correspond to the blocks updated by the server.

Therefore, we implemented FlexList as an elegant solution to all these problems. Note that Erway et
al. [25] informally proposed a FlexList structure first. But, we are the first to fully implement this idea,
show its security analysis, perform many optimizations, and conduct real performance tests. Rather than
adding more space or time requirements, we show that indeed FlexList reduces both time and space
requirements, compared to RBASL and similar data structures. Furthermore, all our optimizations
presented, including the first-known O(n) build that can be parallelized, and multi-prove and multi-
update capabilities, can be applied on top of RBASL and authenticated skip lists as well, since RBASL
is indeed a special case of FlexList. Thus, an efficient way to implement such a secure cloud storage
service is through FlexList and FlexDPDP. Next, we show that FlexDPDP, though being dynamic, has

5We mean their main construction here.
6We actually prepared a graph for this comparison, but it indeed almost exactly shows n/2 performance improvement

ratio in all our tests with random updates, and hence we chose not to waste space showing such an obvious experiment result.
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almost the same performance as the best-known static scheme.

7.5 Comparison with Static Cloud Storage on the PlanetLab
We compare static PDP [4] with our dynamic FlexDPDP. PDP server computes the sum of the challenged
blocks, and performs the multiplication and exponentiation –by random challenge exponents– of their
tags. FlexDPDP server only computes the sum of the challenged blocks and a FlexList proof, but not the
multiplication and exponentiation of their tags, which are done at the client side. In such a scenario, the
FlexDPDP server outperforms such a naive PDP server, since the multiplication and exponentiation of
tags by the PDP server are expensive cryptographic operations that take much longer than the FlexList
proof generation in FlexDPDP. This result is surprisingly in contrast to the fact that PDP proofs take
O(1) time whereas FlexDPDP proofs require O(log n) time, mainly due to this big difference in the
constants in the Big-Oh notation.

We note that it is possible for PDP to be implemented by the server sending the tags to the client and
the client computing the multiplication and exponentiation of the tags. We call this modified version of
the PDP protocol PDP∗. Even though the proof size grows in PDP∗, the PDP∗ server can respond to
challenges faster than the FlexDPDP server, presenting a computation-communication trade-off for the
server. Therefore, we realize that where to handle the multiplication and exponentiation of tags is
an important implementation decision for PDP.

We deployed FlexDPDP, together with the original and modified PDP versions, on the PlanetLab.
A node on the PlanetLab has minimum requirements of having 6x Intel Xeon E5 cores @ 2.2GHz
processor, 24 GB of RAM, and 2TB shared hard disk space. The nodes are also required to have
minimum of 400kbps of bi-directional bandwidth to the Internet [46]. As a central point in Europe, we
chose a node in Berlin, Germany7 as the server. We measured the whole time spent for one challenge,
starting from the time the client starts to generate the challenge, until the time that the client receives and
verifies the proof (see Table 2). We moved our client location and tested serving a close range client in
Munich, Germany8, a mid-range client in Koszalin, Poland9, and a distant client in Lisbon, Portugal10.
We used a single core at each side. The protocols are run on a 1GB file, which is divided into blocks of
2KB, having 500000 nodes.

As shown on Table 2, we conclude that using 6 cores (usual core count in PlanetLab nodes), a PDP
server can answer 14.5 queries per second whereas a server using PDP∗ or FlexDPDP can serve 462
queries or 155.5 queries per second, respectively. We discern that, for the server, tag exponentiation
and multiplication are the most time consuming tasks in preparing a proof. It is clear that to increase
the server throughput, tag exponentiation and multiplication should be delegated to the client. This
delegation increases the total time spent by the client, since the tags should be sent over the network
now. However, the outcome is the dramatic increase in the server throughput. Note that, when one
considers the total time a client spends for sending a challenge, obtaining the proof, and verifying it, the
overhead of being dynamic (FlexDPDP vs. PDP∗) is around 40 to 90 ms, which is a barely-visible
difference for a real-life application (especially considering that the whole process takes on the
order of a second).

8 Related Work
Skip Lists and Other Data Structures: Table 3 provides an overview of data structures proposed
for secure cloud storage. Among the structures that enable dynamic operations, the advantage of skip
list is that it keeps itself balanced probabilistically, without the need for complex balancing operations

7planetlab01.tkn.tu-berlin.de
8planetlab1.lkn.ei.tum.de
9ple2.tu.koszalin.pl

10planetlab1.di.fct.unl.pt
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PDP PDP∗ FlexDPDP
Local Server Computation 413.19 12.97 38.60

Close Client Total 466.82 557.49 649.11

Mid-range Client Total 496.856 714.47 874.63

Distant Client Total 551.376 986.98 1023.25

Table 2: Time spent for a challenge of size 460, in milliseconds. PDP∗ is the modified PDP scheme,
where we send all the challenged tag values to the client individually, instead of processing them at the
server.

[49]. It offers search, modify, insert, and remove operations with logarithmic complexity with high
probability [48]. A skip list is similar to a binary tree in the sense that the below and after links of a
node can be thought to correspond to the left and right children. Skip lists have been extensively studied
[3, 7, 22, 25, 33, 40, 47]. They are used as authenticated data structures in two-party protocols [45], in
outsourced network storage [33], with authenticated relational tables for database management systems
[7, 27], in timestamping systems [10, 11], in outsourced data storages [25, 31], and for authenticating
queries for distributed data of web services [47].

In a skip list, not every edge or node is used during a search or update operation; for efficiency,
those unnecessary edges and nodes should be omitted. Similar optimizations for authenticated skip lists
were tested in [30]. Furthermore, as observed in DPDP [25] for an RBASL, some corner nodes can be
eliminated to decrease the overall number of nodes. Our FlexList contains all these optimizations and
further improvements, analyzed both formally and experimentally.

A binary tree-like data structure called rope is similar to our FlexList [12]. It was originally devel-
oped as an alternative to the strings; bytes can be used instead of the strings as in our scheme. Since a
rope is a tree-like structure, its disadvantage is that it requires balancing operations. Moreover, a rope
needs further structure optimizations to eliminate unnecessary nodes.

Hash Map
(the whole
file) [50]

Hash Map
(block
by block)
[44]

PDP [4] Merkle
Tree [54]

Balanced
Tree (2-3
Tree)
[43, 56]

RBASL
[25]

FlexList

Client Stor-
age

O(1) O(n) O(1) O(1) O(1) O(1) O(1)

Proof
time/size

O(n) O(1) O(1) O(log n) O(log n) O(log n) O(log n)

Dynamic
op. capa-
bility

- (none) - (append-
only)

-
(append-
only)

- (worst-
case
O(n))

+ (balanc-
ing issues)

+ (fixed
block
size)

+ (fully
dy-
namic)

Table 3: Complexity and capability table of various data structures for provable cloud storage. n is the
number of blocks.

Cloud Storage Related Work: Initial works used hash-based solutions [50, 44]. While these are
important starting works in the field, they were inefficient, requiring linear client storage or proofs. PDP
[4] was one of the first proposals for efficient provable cloud storage. PDP does not employ a data
structure for the authentication of the blocks, and is applicable to only static (append-only) storage. A
later variant called Scalable PDP [6] allows a limited number of updates. Wang et al. [54] proposed
the usage of Merkle tree [42], which works perfectly for the static scenario, but has balancing problems
in a dynamic setting. If the insertion and deletions are mostly over a small subset of the indices, the
performance can degrade down to an O(n) worst-case due to an imbalanced tree. For the dynamic
case, we would need an authenticated balanced tree such as the data structure proposed in [56], named

27



range-based authenticated 2-3 tree [43]. Nevertheless, skip lists are much simpler data structures to
implement, and more importantly algorithms for efficiently updating and maintaining authentication
information have been studied in detail for the authenticated skip list [45]. Table 3 summarizes this
comparison.

For improving data integrity on the cloud, some protocols [20, 35, 17, 38, 34, 39] provide Byzantium
fault-tolerant storage services based on some server labor. There also exist protocols using quorum
techniques, which do not consider the server-client scenarios but works on local systems such as hard
disk drives or local storage [36, 29, 1, 21]. A recent protocol using quorum techniques [9] replicates
the data on several storage providers to improve integrity of the data stored on the cloud; yet it also
considers static data.

For dynamic provable data possession (DPDP) in a cloud storage setting, Erway et al. [25] were the
first to introduce the new data structure called the rank-based authenticated skip list (RBASL), which
is a special type of an authenticated skip list [33]. In the DPDP model, there is a client who wants to
outsource her file and a server that takes the responsibility for the storage of the file. The client pre-
processes the file and maintains meta data to verify the proofs from the server. Then she sends the file to
the server. When the client needs to check whether her data is intact or not, she challenges some random
blocks. Upon receipt of the request, the server generates a corresponding proof and sends it back. The
client then verifies the integrity of the file using this proof. Many other static and dynamic schemes have
been proposed [37, 51, 24, 18, 19, 52] including multi-server optimizations on them [14, 23, 28].

An RBASL, unlike an authenticated skip list, allows a search with the indices of the blocks. This
gives the opportunity to efficiently check the data integrity using block indices as parameters in the proof
and update queries in DPDP. Each node in the RBASL has a rank, indicating the number of the leaf-level
nodes (equivalently, the number of file blocks) that are reachable from that particular node. Leaf-level
nodes having null after links have a rank of 1, meaning they can be used to reach themselves only.
Ranks in an RBASL solve the problem of updating the block numbers in PDP [4], and are thus used to
construct a dynamic system.

Nevertheless, in a realistic scenario, the client may wish to change a part of a block, not the whole
block. To partially modify a particular block in a block-based RBASL, we not only modify a specified
block but also may have to change all following blocks. This means the number of modifications is
O(n) in the worst-case scenario for DPDP as well (see Sections 4 and 7.4).

Another dynamic provable data possession scheme employs a new data structure called a balanced
update tree, whose size grows with the number of the updates performed on the data blocks [55]. Due to
this property, extra rebalancing operations are required. The scheme uses message authentication codes
(MAC) to protect the data integrity. Unfortunately, since the MAC values contain indices of the data
blocks, they need to be recalculated with insertions or deletions. The data integrity checking can also
be costly, since the server needs to send all the challenged blocks with their MAC values, because the
MAC scheme is not homomorphic (see [5]).

The FlexList data structure, based on an RBASL, performs dynamic operations (modify, insert, re-
move) for cloud data storage, efficiently handling variable-sized updates in a provably secure manner.
Furthermore, we present the first optimized construction of such a scheme, and demonstrate both theo-
retical and experimental improvements.

9 Conclusions and Future Work
The security and privacy concerns are significant obstacles towards the adoption of cloud storage [57].
With the emergence of cloud storage services, data integrity has become one of the most important
challenges. Early works have shown that the static solutions with optimal complexity [4, 51], and the
dynamic solutions with logarithmic complexity [25] are within reach. However, a block-based DPDP
[25] solution is not applicable to real life scenarios since it supports only fixed block size and therefore
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lacks flexibility on the data updates, while the real life updates are not multiples of a meaningful con-
stant block size. We have extended earlier studies in several aspects, implemented a new data structure
(FlexList) and provided optimizations for use in the cloud data storage. A FlexList efficiently sup-
ports variable block sized dynamic provable updates, and we showed how to handle multiple proofs and
updates at once significantly improving scalability. We also studied energy efficiency of FlexList and
FlexList-based cloud storage, FlexDPDP. We showed, for the first time in the literature, how to build
such a data structure from scratch in O(n) time, instead of O(n log n) time. We also proposed how
to parallelize such an authenticated structure. As future work, we plan to further study parallelism on
multi- proofs and updates, and also aim to extend our system to peer-to-peer storage settings.
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[26] E. Esiner, A. Küpçü, and O. Özkasap. Analysis and optimization on flexdpdp: A practical solution for
dynamic provable data possession. In Intelligent Cloud Computing (ICC) conference, 2014.
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A Detailed Algorithms
A.1 FlexList Preliminaries
Table 4 shows the notation used in the FlexList algorithms.

Symbol Description
cn current node
pn previous node, indicates the last node that current node moved from
mn missing node, created when there is no node at the point where a node has to be linked
nn new node
dn node to be deleted

after the after neighbor of a node
below the below neighbor of a node

r rank value of a node
i index of a byte

npi a boolean which is always true except in the inner loop of insert algorithm
tn stack (initially empty), filled with all visited nodes during search, modify, insert or remove algo-

rithms

Table 4: Symbol descriptions of skip list algorithms.

Algorithm A.1: canGoBelow Algorithm
Input: current node cn, search index i
Output: True/False

return i < cn.below.r + 1; // if called in the insert algorithm, "+1" is not used1

Algorithm A.2: canGoAfter Algorithm
Input: current node cn, search index i
Output: True/False

if i > cn.below.r then1
// if called in the isIntersection method, use ≥ above, and do not perform the
following if statement
if cn.after.data.length > i - cn.below.r then2

return false3
return true4

return false5

Algorithm A.3: nextPos Algorithm
Input: cn, i, level, npi, tn
Output: cn, i, tn

while canGoBelow(cn, i) OR canGoAfter(cn, i) do1
if canGoBelow(cn, i) AND cn.below.level ≥ level AND npi then2

cn = cn.below3
else if canGoAfter(cn, i) AND cn.after.level ≥ level then4

i = i - cn.below.r// update search index5
cn = cn.after6

add cn to tn7

Algorithm A.4: createMissingNode Algorithm
Input: pn, cn, i, level, tn
Output: pn, cn, i, tn

mn = new node is created using level // rank value for mn is set to ∞ for now1
// put to correct location
if canGoBelow(cn,i) then2

mn.below = cn.below3
cn.below = mn4

else5
mn.below = cn.after6
cn.after = mn7
i = i - cn.below.r // update search index8

pn = cn9
cn = mn10
add cn to tn11
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Algorithm A.5: deleteUNode Algorithm
Input: pn, cn, tn
Output: pn, cn, tn

if cn.level == 0 then1
cn.after = NIL2

else3
if pn.below == cn then4

pn.below = cn.below5
else6

pn.after = cn.below7
tn.pop()8
cn = pn9

A.2 Algorithms of FlexList Methods

Algorithm A.6: search Algorithm
Input: search index i
Output: node cn at the index, stack tn of nodes on the search path
tn = new empty Stack1
cn = root2
call nextPos // cn moves until cn.after is a tower node of the searched index. nextPos also3
adds nodes on the path to the stack tn.
cn = cn.after4
add cn to tn5
// Loop moves cn below until the node at the leaf level
while cn.level 6= 0 do6

cn = cn.below7
add cn to tn8

Algorithm A.7: modify Algorithm
Input: index i, new data data
Output: node cn at the index, stack tn of nodes on the search path

( cn, tn) = search(i)1
cn.data = data2
// For an authenticated structure, call calculateHash on the nodes in the tn to
re-compute their hashes.

Algorithm A.8: insert Algorithm
Input: index of insertion i, data
Output: the new leaf-level node nn, stack tn of search path
tn = new empty Stack1
pn = root2
cn = root3
level = tossCoins()4
call nextPos // cn moves until it finds a missing node or cn.after is where nn is to be5
inserted
// Check if there is a node where new node will be linked. if not, create one.
if !CanGoBelow(cn, i) or cn.level 6= level then6

call createMissingNode;7
// Create new node and insert after the current node.
nn = new node created using level level, index i8
nn.after = cn.after9
cn.after = nn10
add nn to tn11
// Create insertion tower until the leaf level is reached.
while cn.below 6= null do12

if nn.after 6= null then13
tn = new node created using index i14
nn.below = tn15
nn = nn.below16
add nn to tn17

call nextPos // Current node moves until we reach an after link that passes through the18
tower. That is the insertion point for the new node.
// Create next node of the insertion tower.
nn.after = cn.after19
cn.after = null20
nn.level = cn.level21
// cn becomes unnecessary as it looses its after link, therefore it is deleted
deteletUNode(pn, cn);22

// Done inserting, put data and return this last node.
nn.data = data23
// For an authenticated structure, call calculateHash on the nodes in the tn to
re-compute their hashes.
// For FlexList or RBASL, call calculateRank on the nodes in the tn to re-compute their
ranks.
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Algorithm A.9: remove Algorithm
Input: removal index i
Output: deleted node dn, stack tn of search path of the left leaf-level neighbor of the node removed
tn = new empty Stack1
pn = root2
cn = root3
call nextPos // Current node moves until after of the current node is the node at the top4
of deletion tower
dn = cn.after5
// Check if current node is necessary,if so it can steal after of the node to delete,
otherwise delete current node
if cn.level = dn.level then6

call deleteNode(cn, dn)7
dn = dn.below; // unless at leaf level8

else9
call deleteUNode(pn, cn)10

// Delete whole deletion tower until the leaf level is reached
while cn.below 6= null do11

call nextPos // Current node moves until it finds a missing node12
// Create the missing node unless at leaf level and steal the after link of the node
to delete
call createMissingNode13
call deleteNode(cn, dn)14
dn = dn.below // move dn to the next node in the deletion tower unless at leaf level15

// For an authenticated structure, call calculateHash on the nodes in the tn to
re-compute their hashes.
// For FlexList or RBASL, call calculateRank on the nodes in the tn to re-compute their
ranks.

A.3 Novel Build from Scratch Algorithm

Algorithm A.10: buildFlexList Algorithm
Input: block list B, level list L, tag list T
Output: root
// H will keep pointers to leftmost tower heads at each level
H = new vector is created of size L0 + 11
// iterate for each block
for i =B.size− 1 to 0 do2

pn = null3
for j = 0 to Li+1 do4

// Always do this for leaf level, and otherwise do only if Hj contains an
element
if Hj 6= null or j = 0 then5

nn = new node is created with level j //if at the leaf level, link to block Bi, and tag6
T i from nn
nn.below = pn7
nn.after = Hj // Connect tower head at Hj as an after link8
call calculateRank and calculateHash on nn9
pn = nn10
Hj = null // Tower head will be at a higher level11

HLi
= pn // Add a tower head to H at level Li12

root = HL013
root.level =∞14
call calculateHash on root15
return root16

The algorithm starts with the creation of the vector H to hold pointers to the tower heads (line 1), where Hi

represents the leftmost tower head at level i. For the first iteration of the inner loop (lines 6-11), the node v1 in
Figure 8 is created, which is a leaf node with no node below. The hash and the rank values of v1 are calculated.
Currently, H is empty; therefore there is no node at H0 to connect to v1 at level 0, and no new nodes are created
at levels 1, 2, 3, 4. At line 12, v1 is put into H as H4, because v1 is currently the head node of the leftmost tower
in the FlexList at level 4 (remember, the associated level for insertion is 4). The algorithm continues with the next
block and the creation of v2. H0 is still empty, therefore no after link for v2 is set. The hash and the rank values
of v2 are calculated. The next two iterations of the inner loop skips the lines 6-11, because H1 and H2 are null. At
line 12, v2 is inserted to H0. At this point, H only contains two values that are not null: H0 = v2 and H4 = v1.

Then, v3 is created and its hash and rank values are calculated. It takes the current H0 as its after link (i.e.,
line 8 sets v3.after = H0 = v2). H0 becomes null. The level of v3 is 1, and H1 is null, therefore we set H1

to v3. Next, node v4 is created and there is no element at H0 to connect to v4. The hash and the rank values of
v4 are calculated, and then we set H0 as v4, as its level is 0. Next v5 is created, its after is set (i.e., line 8 sets
v5.after = H0 = v4), and the new H0 becomes v5, since its level is 0 as well. When v6 is created, it becomes
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H0, taking v5 as its after. Since H1 is not null, we create v7 at level 1 and set v7.after = H1 = v3. The
algorithm continues in this manner.

A.4 FlexDPDP Preliminaries
Table 5 shows the notation used in the FlexDPDP algorithms.

Symbol Description
hash hash value of a node
rs rank state, indicates the byte count to the left of current node and used to recover the index value i when

a roll-back to a state is done
state state, created in order to store from which node the algorithm will continue, contains a node, rank state,

and last index
C challenged indices vector, in ascending order
V verify challenge vector, reconstructed during verification to check whether or not the proof indeed

belongs to challenged blocks, in terms of indices
p proof node
P proof vector, stores proof nodes for all challenged blocks
T tag vector of the challenged blocks
M block sum, which is a combined block (see [4, 25])
ts intersection stack, stores state at intersections in searchMulti algorithm
th intersection hash stack, stores hash values to be used at intersections
ti index stack, stores pairs of integer values, employed in updateRankSum

tl changed nodes’ stack, stores nodes for later hash calculation, employed in hashMulti

start start index in ti from which updateRankSum should start
end end index in ti

first current index in C

last end index in ts

Table 5: Symbols used in our algorithms.

A.5 Handling Multiple Challenges at Once

Algorithm A.12: genMultiProof Algorithm
Input: challenge vector C, random number vector A
Output: tag vector T , block sum M , proof vector P

Let A = (a0, . . . , ak), and state be a triplet state=(node, lastIndex, rs)
cn = root1
rs = 02
M = 03
Initialize empty ts, P , T4
add state(root, k, rs) to ts5
// Call searchMulti method for each challenged block to fill the proof vector P
for i = 0 to k do6

state = ts.pop()7
cn = searchMulti(state.node,C, i,state.lastIndex,state.rs,P ,ts) // searchMulti adds proof nodes to8
P, adds intersection states to ts, and returns the node containing index Ci
// Store tag of the challenged block and compute the block sum
add cn.tag to T9
M += cn.data*ai10

In Figure 12, the challenge vector C generated from the random seed sent by the client contains [170, 320,
470, 660] as the challenged indices. By taking this challenge vector C as input, the genMultiProof algorithm
generates the proof P , collects the tags into the tag vector T , calculates the block sum M , and returns all three.
The algorithm starts traversing from the root (w1 in the figure) by retrieving it from the intersection stack ts at
line 7. Then, in the loop, we call searchMulti, which adds the proof nodes for w1, w2, w3 and c1 to the proof
vector P (see bottom four elements in Figure 13). The state of node w4 is saved in the stack ts as it is the after
of an intersection node, and the intersection flag for the proof node for w3 is set. Note that proof nodes at the
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Algorithm A.11: searchMulti Algorithm
Input: current node cn to continue from, challenge vector C, first index first to C, second index last to C, current rank state rs,

proof vector P to add to, intersection stack ts to add to
Output: updated current node cn, updated proof vector P , updated intersection stack ts

i = Cfirst−rs // Challenged index is calculated according to the current sub skip list1
root
// Create and put proof nodes on the search path to the proof vector
while Until challenged node is included in P do2

p = new proof node with level cn.level and rank cn.r3
// If the node at the challenged index is found, end this branch of the proof path
if cn.level = 0 and i < cn.length then4

p.setEndF lag()5
p.length = cn.length6

// Get rid of indices that are on the same challenged node
tempStart = first7
while CtempStart + cn.data.length - i > CtempStart+1 do8

first = first + 19
// When an intersection is found with another branch of the proof path, save the
state
if isIntersection(cn, C, i, lastk, rs) then10

//note that lastk becomes lastk+1 in isIntersection method
p.setInterF lag()11
add state(cn.after, lastk, rs+cn.below.r) to ts // Add a state for cn.after to continue from12
there later

// Missing fields of the proof node are filled according to the link current node
follows
if (CanGoBelow(cn, i)) then13

p.hash = cn.after.hash14
p.rgtOrDwn = dwn15
cn = cn.below //unless at the leaf level16

else17
p.hash = cn.below.hash18
p.rgtOrDwn = rgt19
cn = cn.after20
// Update index and rank state values according to how many bytes at leaf nodes
are passed while following the after link
i -= cn.below.r21
rs += cn.below.r22

add p to P23

intersection points store no hash value. The second iteration starts from w4, which is the last saved state. New
proof nodes for w4, w5 and c2 are added to the proof vector P , while c3 is added to the intersection stack ts.
The third iteration starts from c3 and searchMulti adds c3 to the proof vector P . Note that w6 is added to the
intersection stack ts. In the last iteration, w6 and c4 are added to the proof vector P , and nothing is added to the
stack. As the intersection stack ts is now empty, the loop is over. Note that all proof nodes of the challenged
indices have their end flags and length values set (lines 9 and 10). When genMultiProof returns, the output proof
vector should be as in Figure 13.

The hash for each proof node can be calculated in different ways as described below using the example of
Figures 12 and 13. The hash calculation always has the level and rank values stored in a proof node as its first two
arguments.

• If a proof node is marked as end but not intersection (e.g., c4, c2, and c1), this means the corresponding
node was challenged (to be checked against the challenged indices later), and thus its tag must exist in the
tag vector. We compute the corresponding hash value using that tag, the hash value stored in the proof node
(null for c4 since it has no after neighbor, the hash value of v4 for c2, and the hash value of v3 for c1), and
the corresponding length value (110 for c4, 80 for c2 and c1).

• If a proof node is not marked with either flag and, rgtOrDwn = rgt or level = 0 (e.g., w6, w2), this
means the after neighbor of the node is included in the proof vector and the hash value of its below is
included in the associated proof node (if the node is at the leaf level, the tag is included instead). Therefore
we compute the corresponding hash value using the hash value stored in the corresponding proof node and
the previously calculated hash value of the after neighbor (hash of c4 is used for w6, hash of w3 is used
for w2).

• If a proof node is marked as intersection and end (e.g., c3), this means the corresponding node was both
challenged (thus its tag must exist in the tag vector) and is on the proof path of another challenged node;
therefore, its after neighbor is also included in the proof vector. We compute the corresponding hash
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Algorithm A.13: verifyMultiProof Algorithm
Input: challenge vector C, proof vector P , tag vector T , local MetaData
Output: accept or reject

Let P = (A0, . . . , Ak), where Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for
j = 0, . . . , k, and T = (tag0, . . . , tagn), where tagm is the tag for the challenged blockm for
m = 0, . . . , n.
start = n1
end = n2
t = n3
hashprev = 04
startTemp = 05
initialize empty V , th, ti6
// Process each proof node from the end to calculate the hash of the root and the
indices of the proven blocks
for j = k to 0 do7

if isEndj and isInterj then8
hash = hash(levelj , rj , tagt,hashprev , lengthj )9
t = t −110
updateRankSum(lengthj , V , start, end) // Calculate the index values of proven blocks11
at the leaf level of the current branch of the proof path
start = start −112

else if isEndj then13
if t 6= n then14

add hashprev to th15
add (start, end) to ti16
start = start −117
end = start18

hash = hash(levelj , rj , tagt,hashj , lengthj)19
t = t −120

else if isInterj then21
(startTemp,end) = ti.pop()22
updateRankSum(rprev , V , startTemp,end) // Last stored indices of the proven blocks23
are updated using the rank state of the current intersection
hash = hash(levelj , rj , hashprev , th.pop())24

else if rgtOrDwnj = rgt or levelj = 0 then25
hash = hash(levelj ,rj ,hashj ,hashprev)26
updateRankSum(rj− rprev , V , start, end) // Update indices of the proven blocks that are27
on the current branch of the proof path

else28
hash = hash(levelj , rj , hashprev , hashj)29

hashprev = hash30
rprev = rj31

//endnodes is a vector of proof nodes marked as end, in the order of appearance in P
if ∀a, 0 ≤ a ≤ n , 0 ≤ Ca −Va < endnodesn−a.length AND hash = MetaData then32

return accept33
return reject34

value using the corresponding tag from the tag vector and the previously calculated hash value of the after
neighbor (hash of w6 for c3).

• If a proof node is marked as intersection but not end (e.g., w5 and w3), this means the node was not chal-
lenged but both its after and below are included in the proof vector. Hence, we compute the corresponding
hash value using the previously calculated two hash values of its after and below neighbors (the hash val-
ues calculated for c2 and for c3, respectively, are used for computing the hash of w5, and the hash values
calculated for c1 and for w4, respectively, are used for w3).

• If none of the above is satisfied, this means a proof node has only rgtOrDwn = dwn (e.g., w4 and
w1), meaning the below neighbor of the node is included in the proof vector. Therefore we compute the
corresponding hash value using the previously calculated hash value of this below neighbor (hash of w5 is
used for w4, and hash of w2 is used for w1) and the hash value stored in the corresponding proof node.
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A.6 Handling Multiple Updates at Once

Algorithm A.14: multiUpdate Algorithm
Input: FlexList, U
Output: P , T , M , newRootHash

Let U = (u0, . . . , uk) where uj is the jth update information
C = generateIndices(U ) //According to the nature of the update for each u ∈ U , we add an1
index to the vector (uj .i for insert and modify, uj .i and uj .i− 1 for remove as it is for
a single update proof)
P , T , M= genMultiProof(C) //Generates the multiProof using the FlexList2
for i = 0 to k do3

apply ui to FlexList without any hash calculations4
update C to all affected nodes using U5
calculateMultiHash(C) // Calculates hash values of the changed nodes6
newRootHash = FlexList.root.hash7

Algorithm A.15: calculateMultiHash Algorithm
Input: C
Output:

Let C= (i0, . . . , ik) where ij is the (j + 1)th altered index; statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; ts, tl are empty; state= (root, k, rs)1
// Call hashMulti method for each index to fill the changed nodes stack tl
for x = 0 to k do2

hashMulti(state.node,C, x,state.end,state.rs,tl,ts)3
if ts not empty then4

state = ts.pop(); cn = state.node ; state.rs += cn.below.r5
for k =tl.size to 0 do6

calculate hash of kth node in tl7

Algorithm A.16: hashMulti Algorithm
Input: cn, C, first, last, rs, tl, ts
Output: cn, tl, ts
// Index of the challenged block (key) is calculated according to the current sub skip
list root
i = Cfirst−rs1
while Until challenged node is included do2

cn is added to tl3
//When an intersection is found with another branch of the proof path, it is saved
to be continued again, this is crucial for the outer loop of ‘‘multi’’ algorithms
if isIntersection(cn, C, i, lastk, rs) then4

//note that lastk becomes lastk+1 in isIntersection method
state(cn.after, lastk+1, rs+cn.below.r) is added to ts5

if (CanGoBelow(cn, i)) then6
cn = cn.below //unless at the leaf level7

else8
// Set index and rank state values according to how many bytes at leaf nodes are
passed while following the after link
i -= cn.below.r; rs += cn.below.r; cn = cn.after9

hashMulti (Algorithm A.16), employed in calculateMultiHash algorithm, collects nodes on a search path
of a searched node. It also collects the intersection points (the lowest common ancestor (lca) of the node the
collecting is done for and the next node of which the hash calculation is needed). The repetitive calls from
calculateMultiHash algorithm for each searched node collect all nodes which may need a hash recalculation.
Note that each time, a new call starts from the last intersecting (lca) node.

calculateMultiHash (Algorithm A.15) first goes through all changed nodes and collects their pointers, then calcu-
lates all their hash values from the largest index value to the smallest, until the root. This order of hash calculation
respects all hash dependencies.

We illustrate handling multiple updates with an example. Consider a multiUpdate called on the FlexList of
Figure 3 and a consecutive modify and insert happen to indices 50 and 110 respectively (insert level is 2). When
the updates are done without hash calculations, the resulting FlexList looks like the one in Figure 14. Since the
tag value of c6 has changed and a new node added between c6 and c7, all the nodes getting affected should have a
hash recalculation. If we first perform the insert, we need to calculate hashes of n3, n2, c6, n1, c2 and c1. Later,
when we do the modification to c6 we need to recalculate hashes of nodes c6, n1, c2 and c1. There are 6 different
nodes to recalculate hashes of, but we do 10 hash calculations. Instead, we propose performing the insert and
modify operations and call calculateMultiHash to indices 50 and 110, which calculates the necessary hash values
without any wasted effort.
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Remember that in the example of Figure 14, calculateMultiHash was called with indices 50 and 110. The
first call of hashMulti goes through c1, c2, n1, and c6. On its way, it pushes n2 to a stack since the next iteration
of hashMulti starts from n2. Then, with the second iteration of calculateMultiHash, n2 and n3 are added to the
stack. At the end, we call the nodes from the stack one by one and calculate their hash values. Note that the order
preserves the hash dependencies.

Algorithm A.17: constructTemporaryFlexList Algorithm
Input: P , T
Output: root (temporary FlexList)

Let P = (A0, . . . , Ak), where Aj = ( levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for
j = 0, . . . , k; T = (tag0, . . . , tagt), where tagt is tag for challenged blockt and dummy nodes are
nodes including only hash and rank values set on them and they are final once they are
created; //
root = new Node(r0, length0) // This node is the root and we keep this as a pointer to return1
at the end//
ts = new empty stack2
cn = root3
dumN = new dummy node is created with hashj4
cn.after = dumN5
for i = 0 to k do6

nn = new node is created with Leveli+1 and ri+17
if isEndi and isInteri then8

cn.tag = next tag in T ; cn.length = lengthi ; cn.after = nn; cn = cn.after9
else if isEndi then10

cn.tag = next tag in T ; cn.length = lengthi ; if ri != lengthi then11
dumN = new dummy node is created with hashi as hash and ri - lengthi as rank12
cn.after = dumN13

if ts is not empty then14
cn = ts.pop() ; cn.after = nn; cn = cn.after15

else if leveli = 0 then16
cn.tag = hashi ; cn.length = ri - ri+1 ; cn.after = nn ; cn = cn.after17

else if isInteri then18
cn is added to ts ; cn.below = nn; cn = cn.below19

else if rgtOrDwni = rgt then20
cn.after = nn21
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank22
cn.below = dumN ; cn = cn.after23

else24
cn.below = nn25
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank26
cn.after = dumN ; cn = cn.below27

return root28

Algorithm A.18: verifyMultiUpdate Algorithm
Input: P , T ,MetaData, U, MetaDatabyServer

Output: accept or reject

Let U= (u0, . . . , uk) where uj is the jth update information
if !verifyMultiProof(P, T, MetaData) then1

return reject2
FlexList = buildTemporaryFlexList(P )3
for i = 0 to k do4

apply ui to FlexList without any hash calculations5
calculate hash values of all nodes in the temporary FlexList. //A recursive call from the root6
if root.hash != MetaDatabyServer then7

return reject8
return accept9
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