
Verifiable Database Outsourcing Supporting Join

Mohammad Etemada, Alptekin Küpçüa

aKoç University,İstanbul, Turkey

Abstract

In an outsourced database scheme, the data owner delegates the data management tasks to a remote service provider
who is supposed to answer owner’s queries on the database. The essential requirements are ensuring the data integrity
and authenticity with efficient mechanisms. Current approaches employ authenticated data structures to store security
information, generated by the client and used by the server,to compute proofs that show the query answers are
authentic. The existing solutions have shortcomings with multi-clause queries and duplicate values in a column.

We propose a hierarchical authenticated data structure forstoring security information, which alleviates the men-
tioned problems. Our solution handles many different typesof queries, includingmulti-clause selectionand join
queries, in adynamicdatabase. We provide a unified formal definition of a secure outsourced database scheme, and
prove that our proposed scheme is secure according to this definition, which captures previously separate properties:
correctness, completeness, andfreshness. The performance evaluation based on our prototype implementation con-
firms the efficiency of our proposed scheme, showing∼3x smaller proofs and∼5x improvement in proof generation
time compared to previous works (Devanbuet al.2002, Panget al.2005, Liet al.2010, Palazziet al.2010).

Keywords: Outsourced databases, Hierarchical authenticated data structures

1. Introduction

Popularity and pervasiveness of computer systems and networks have led to production of huge amount of data
in organizations and companies. Data needs protection, andmost companies lack enough resources to provide it. By
outsourcing data storage and management, they free themselves from data protection difficulties, and concentrate on
their own proficiency. Consider a university who stores dataabout all students, faculty, and courses in a relational
database, with limited resources and equipment for hostinga large amount of data and handling a large volume of
queries, especially at the beginning and end of each semester. The university wishes to outsource data management to
a remote database service provider who offers mechanisms toaccess and update the database online.

The main concern is that the owner loses the direct control over her data and should rely on answers coming from
the service provider (who isnot fully trusted). This necessitates mechanisms giving the data owner (the client) the
ability for checking authenticity of the answers to her queries. For this, the answer of a client query (theresult set) is
accompanied with averification object(vo). Since the client may be a portable device with limited processing power,
thevoshould be small and efficiently verifiable. It is used to verify whether the query answer is [1, 2, 3, 4, 5, 6]:
• complete: the result set sent to the client is exactly the set of records that are the output of executing the query,

i.e., no record is added or removed.

• correct (sound): the result set originates from the data owner, i.e., no unauthorized modification on records.

• fresh: the result set sent to the client is provided using the most recent data on the server, and does not belong
to old versions, i.e., no replay attacks.

A small part of our sample database together with the result of the query “SELECT * FROM Student WHERE

stdID > 105” is shown in Figure1. We want the completeness, correctness, and freshness properties all holding in
the answer, guaranteeing its authenticity. Recall that a primary key (PK) column in a table (e.g.,stdID in Figure1a)
contains unique values, while non-PK columns (e.g.,Major andBCity in Figure1a) may contain duplicate values.

Email addresses:metemad@ku.edu.tr (Mohammad Etemad),akupcu@ku.edu.tr (Alptekin Küpçü)

Preprint submitted to Journal of Network and Computer Applications August 24, 2018

Published version available at Elsevier: https://doi.org/10.1016/j.jnca.2018.04.006

(a) Our sample database.
(b) The result set of querySELECT * FROM

Student WHERE StdID>105.

Figure 1: (a) Our sample database and (b) the result of a queryon it.

The client issues queries with clauses on somesearchablecolumns, and checks authenticity of the answers. The
general method is to sort a table by each searchable column and build an authenticated data structure (ADS) on it.
Each ADS is later used to generate cryptographic proofs for queries having a clause on the corresponding column.

There is a problem with duplicate values in non-PK searchable columns [7, 8]: a total order on the values of
searchable columns is required to build the ADSs, which, together with the fact that duplicate values belong to different
records, make building the ADSs complicated. As clarified later in Section1.2, the existing solutions are notefficient.
We introduce ahierarchical ADSscheme (HADS) for this problem that is also advantageous in proof generation for
multi-clause and multi-table (join) queries. The HADS can be stored in the same database [9] or separately. It does
not need to be tied to a specific database and can be changed without affecting the proof system.

The rationale behind our work is to relate everything to the PKs. As the unique identifiers of records in a database,
the PKs enable us to compare and combine the results of different queries and check the correctness and completeness
at the same time (freshness is provided by storing a constant-size metadata locally at the client). This is an important
distinction between our HADS and similar (multi-level) ADSs, as their proofs cannot be combined and compared
together, rendering them inefficient for multi-clause and multi-table queries. We also support dynamic databases
where the data owner issues modification queries (Insert,Delete,Update), in a provable manner. Overall, we
believe our HADS may also be of independent interest, applicable to other scenarios.

Our contributions are summarized as follows:

• We give aunified security definition for an outsourced database scheme (ODB) coveringcompleteness, cor-
rectness, andfreshnesssimultaneously.

• We formalize thehierarchical ADS scheme and prove its security based on the security of the underlying ADSs.

• We build a provably-secure ODB using HADS that supports efficient proof generation for not only single-clause
but alsomulti-clause queries.

• Our scheme supports tables withcomposite keysas well, for the first time.

• Our ODB construction efficiently handles proofs forjoin queries, multi-table joins, non-equijoins, and queries
containingboth join and selection.

• We handle proofs on columns containing duplicate values more efficiently. While being generated about5x
faster, our proofs are about3x smaller in size, compared to the previous works.

• Our ODB provides efficient proofs for almost all query types.We achieve4% communication overhead
compared to the actual result size, using our Koç University database.

1.1. Related Work

ADS-based Approaches. Authenticated data structures are used to store authentication information, which is later
used to generate authenticity proofs for the query results.

Devanbuet al. [10] proposed one of the first schemes using ADS for checking integrity of the outsourced data.
Using a Merkle hash tree to store the security information, the scheme supports the projection and simple join opera-
tions on static data. Pang and Tan [11] used one or moreverifiableB-trees (VB-tree) for each table that is an extension
of B-tree using the Merkle hash tree. A VB-tree is generated for each searchable column after sorting the table on that
column. This method does not support completeness [7], and found insecure for the insecurity of the function used

2

to compute the signatures [12]. A variant of this method, named MB-tree, is also used in theliterature [1, 5, 10, 13].
MB-tree is similar to VB-tree except that a light hash function is used instead of expensive signatures.

Another line of work is using an authenticated skip list to store the required information for verification [3, 14].
It is suitable and efficient enough for this purpose, especially regarding dynamic scenarios. Wang and Du [3] proved
that such ADSs provide completeness and soundness for one-dimensional range queries, and multi-dimensional range
queries require multiple ADSs. Palazzi [14, 15] built one authenticated skip list for each searchable column in each
table. For multi-clause queries, the result of one clause that is finished earlier is returned. This is not efficient sincea
larger set than the query result is transferred. The problemis that the results of these clauses cannot be compared and
combined together. Wanget al. [16] used a tuple-based hash tree to support correctness and completeness for static
outsourced databases. Chenet al. [17] formalized the notion of verifiable databases with incremental updates for the
cases that a large number of small modifications occur. Xuet al. [18] defined theimproved authenticated skip listand
used it to propose a query authentication mechanism for outsourced databases.

Authenticated range queryis a method for supporting the completeness, i.e., there areno extra or missing records
in the answer [1, 2, 10, 12]. The server finds thecontiguousnodes storing the result set of the query, as well as the left
and rightboundary recordsimmediately surrounding the result set. (The underlying ADS needs to beordered.) It then
computes the ADS proofs of the boundary records and sends it together with the result set to the client for verification.
If the proof is accepted, the set{left boundary record, result set, right boundary record} is guaranteed by theordered
ADS to be a sorted and contiguous set of values, with no extra or missing values [3, 19].

Hierarchical ADSs. Nuckolls [5] proposed a flexible structure called Hybrid Authentication Tree, which uses
the one-way accumulators in upper levels to break the dependence on tree height of the MB-tree. Goodrichet al. [4]
gave a verification method by dividing a tree withn leaves into sub-trees with logn leaves. The sub-trees are divided
further into sub-trees withO(loglogn) leaves. This process is repeated recursively up to an optimal level. None of the
previous work formalizes or generalizes such hierarchicalADSs.

Provable join. Li et al. [2] proposed the Embedded Merkle B-tree to support authentic join queries. To join
two tablesR andS, R ⋊⋉Ci=Cj S, whereCi ∈ R andCj ∈ S, they find the smaller table, sayR, and insert it as a whole
into thevo along with its proof. For eachvk ∈Ci , they construct a range query proof (using the other table) for the
query ‘SELECT * FROM S WHERE Cj = vk’, and append it to thevo. It requires|Ci |-many range queries, hence, is not
efficient regarding the client and server computation, and communication.

Panget al. [20] used signature aggregation to propose a scalable query result authentication mechanism for dy-
namic databases. Their first attempt is similar to [2], with a huge verification object. Their second attempt usesa
certified Bloom filter [21] to show that some records has no matching records on the other table.

Join algorithms that use the ADSs for both tables and generate reasonable proofs are proposed by Yanget al. [1].
The Authenticated Indexed Sort-Mergeis an efficient form of previous join algorithms with one ADS [2, 20]. The
Authenticated Indexed Mergeimproves the previous one using two ADSs, one for each table.It traverses each ADS
once, and each required node is inserted only once into thevo. Although it is efficient regarding both computation and
communication, for every (mis)match, two boundary recordsare inserted into thevo that is unnecessary.

An integrity-checking mechanism for join queries performed by anuntrustedcomputational server working to-
gether with sometrustedstorage servers is given in [22]. The client gives the storage servers a query and information
on how to inject some fake records into the result. The storage servers execute the query, inject the fake records,
encrypt and send the result to the computational server who performs the join and sends the final result to the client.

Verifiable computation supports a general set of functionalities over the outsourced data. IntegriDB [23] supports
SQL queries such as max, min, count, sum, and avg on an outsourced database. Pinocchio [24] enables verifying
general computations outsourced to the cloud. ADSNARK [25] proves the results of computations over authenticated
data to the third parties in a privacy-preserving manner. These works also can be utilized in database settings.

Encrypted databasesstore the data in encrypted format. However, range queries require order-preserving en-
cryption (OPE) [6, 26, 27] to find all matching records. Xianget al. [28] proposed a cloud database model where the
computation service providers undertake most of the post-processing and reconstruction burden for database query.
Then, they employed secret sharing and tree-based OPE to give a database outsourcing scheme. Liuet al. [6] used
programmable OPE for outsourced databases. They discussedthe ciphertext-only attacks and statistical attacks for
such schemes, and how to mitigate them.

3

1.2. Overview of Our Solution

Figure 2: The ODB model.

Model. The outsourced database (ODB) model, as depicted in Figure
2, is composed of three parties: thedata owner, thequerier, and theservice
provider. The data owner prepares and uploads the database, and gives
the querier(s) the security information for verification. He may perform
modifications (insert,delete,update) on the outsourced database.

The service provider (theserver) has the required equipment (software,
hardware, and network resources) for storing and maintaining the database.
We do not assume anything about the internal structure of theserver, i.e., it
may use replication and distribution to increase the performance and avail-
ability (e.g., [29, 30]).

The querier (the user) issues a query to the server, who executes the
query, computes the result set, generates the proof, and sends all back to the

querier. The querier then verifies the answer using the security information given by the data owner. For the sake of a
simpler presentation, we refer to them together as theclient. We focus on the single-client case.

We decouple the security information from the real data and split the server into two parts: the DBMS (database
management system) who stores the client data and responds to the client queries, and the DBAS (database authenti-
cation system) who stores the security information as a set of ADSs and HADSs, and generates proofs for the queries.
The server relays the received queries to both the DBMS and DBAS, collects and forwards their responses to the
client. They can reside both on the same machine, or on different machines. It is also possible to store the DBAS
inside a DBMS, employing techniques from [3, 9, 14]. Then, both parts can share the same DBMS or employ separate
DBMSs. The DBAS works independently of the underlying DBMS,and any available DBMS can be employed. The
focus of this work is to construct an efficient and secure DBAS. The DBMS and DBAS together constitute an ODB.

Adversarial model. We assume a malicious adversary who may cheat by attacking the integrity of the outsourced
data (doing unauthorized modifications) and giving fake responses to the client queries (running the query processing
algorithm incorrectly, or modifying the results), while trying to be undetected.

ADS-based solution. We build ahierarchicalADS (HADS) for each searchable column of each table to be able
to generate proofs for different queries. Figure4b visualizes the idea for a database. The topmost ADS, thedatabase
ADS, stores the table names. For each table, we have atable ADS, which stores names of the columns in that table.
For each column, we have acolumn ADSthat stores theuniquevalues in that column. Finally, the bottom-most ADSs
areprimary key ADSs, associated with eachuniquevaluevi in a columnCj , storing the primary key (PK) values of the
records havingvi in columnCj . For example, in our sample database in Figure1a, a column-level ADS forMajor will
contain only three leaves, with labelsCE, CS, EE. The lower-level ADS connected to theCE will contain the primary
key values 101, 102, and 106. Similarly, the lower-level ADSconnected toCS will contain 103 and 105. Note that,
our HADS definition is flexible (both in terms of the number of levels, and the types of underlying ADSs used), and
hence such a four-level hierarchy is not a requirement, but asample deployment that makes sense.

Efficient duplicate handling. Columns, such asMajor, contain duplicate values. Obviously, such duplicates can
be made unique, for example, by appending a random perturbation [8], hash of the record [15], or the replica number
[7]. Yet, the server should traverse the whole resulting (big)ADS to search for a value. Since the HADS stores the
unique values in an upper level, which is a much smaller ADS, the server first finds a value in this ADS, and accesses
the whole related values in the lower level, without furthercomputation. As an example, consider a column containing
1000 unique values, each of which is repeated 100 times. A regular (single-level) ADS would need to integrate 100,000
values, whereas our HADS will have one upper-level ADS with 1000 values, and 1000 lower-level ADSs with 100
values each. Hence, instead of searching for 100 values in anADS with 100,000 values, the server looks foronly one
value in an ADS withonly 1000 values(and access the whole lower-level ADS storing 100 values without further
computation). This results in great performance improvements regarding both communication and computation.

We use multi-proof supporting ADSs (e.g., the FlexList [31]) to construct the HADSs, which in turn, makes
efficient authenticated range queries possible. A multi-proof supporting ADS generates an efficient (non-)membership
proof for a set of values, instead of separate proofs for eachvalue. The proof for the range query clausea< coli < b,
indeed, only consists of membership proofs ofa andb, and the values matching the clause.

Join. Another advantage of the HADS is animproved join algorithm. Since we use ordered HADSs, the items

4

(a) ADS ofStudent table’s PK column. (b) A membership proof.

Figure 3: (a) An ADS storing the PK column of theStudent table, and (b) the membership proof for the querySELECT StdID

FROM Student WHERE StdID > 105.

contained in them are comparable, and hence proving mutual memberships (i.e., for ‘AND’ connector and join queries)
is easy. To join two tables on two columns, we start at the leftmost leaf nodes of both ADSs and compare them together.
If they store the same value, it is reflected in the proof. Otherwise, we jump over the nodes containing the smaller
value, to a node containing the smallest value less than or equal to the bigger value. This process goes on until the end
of either ADS is met. The proof size and proof generation timeis reduced due to the lack of duplicates in HADSs.

Comparing proofs. Since the HADS ties all values to their respective PKs, a proof shows the authenticity of a
set of PKs to the client. Hence, it is possible to compare the results of two or more proofs after verification, which
was a common problem among most of the existing solutions [7, 12, 15, 32]. Stated differently, for selection queries
containing more than one clause, the server generates and sends back one proof per clause, but only the actual result
set. Then, the client verifies each proof separately to compute the authenticated PK-sets and performs set operations
among them. The result of this steps is another authenticated PK-set that can be compared against the result of the next
proof. The same happens for join queries with more than one clauses, with a proper ordering detailed in Section5.4,
until all clauses are processed. The client verification is done as in selection queries.Thus, more than two clauses
or joins on more than two tables can be handled efficiently, without increasing the result set size.

2. Preliminaries

Notationsused throughout the paper are as follows:

Abbreviation Description Abbreviation Description
N Number of records in a table |Ci | Number ofdistinctvalues in a columnCi
vo Verification object ODB Outsourced database
PPT Probabilistic polynomial time (H)ADS (Hierarchical) authenticated data structure
pk Public key PK Primary key (in a database table)
DBMS Database management systemDBAS database authentication system

A functionν(k) : Z+→ [0,1] is callednegligible if ∀ polynomials p, ∃ constant k0 s.t. ∀ k> k0, ν(k)< |1/p(k)|.
Hash functions take arbitrary-length strings, and output strings of some fixed length. Leth : K ∗M→ C be a

family of hash functions, whose members are identified byk ∈ K. A hash function family is collision resistant if
∀ PPT adversariesA,∃ a negligible functionν() s.t. Pr[k←K;(x,x′)←A(h,k) : (x′ 6= x)∧ (hk(x) = hk(x′))]≤ ν(k).

Authenticated data structure (ADS) is a scheme for data authentication, where untrusted responders answer
client queries and provide cryptographic proofs that the answers are valid [33, 34, 35]. The client constructs the ADS
and uploads it to a server. On receipt of a query, the server sends back a proof, using which the client can verify the
answer. There are different types of ADSs: accumulators, authenticated skip lists, authenticated hash tables, Merkle
hash trees, 2-3 trees. We provide a formal definition inAppendix Aand a performance comparison inAppendix C.

Authenticated skip list is an extension of the skip list [36]. The leaves store hashes of data items, and the internal
nodes store hash of a function of values of their children. Values on the path from a leaf node up to the root constitute
a membership proof. Figure3apresents an authenticated skip list storing the PK column oftheStudent table, and
Figure3bshows the membership proof for the querySELECT StdID FROM Student WHERE StdID>105.

Merkle hash tree [37] is another widely used ADS forstaticdata. Both ADSs havelinear space complexity, and
logarithmicproof size and verification time, in the number of the items stored [35].

Ordered ADS shows some elements are consecutive (essential for range queries). A total order on the elements to
be stored in an ordered ADS is required. Assumex,y andzareconsecutiveelements of atotal order(A,<) asx< y< z,
andA is stored atADSA. Informally, we sayADSA is orderedif it can prove thatx= pred(y) andz= succ(y) for all

5

(a) A two-level HADS. (b) A general four-level HADS for a database.

Figure 4: HADS constructions with different levels to storesecurity information for a database.

consecutivex,y,z∈ A. The Merkle hash tree and authenticated skip list are ordered ADSs, while the accumulator is
not. An ordered ADS perfectly suits authenticated range queries.

Multi-proof ADS proves (non-)membership of multiple items in one proof. It does not need to do the job for each
item one-by-one, and instead, it generates a proof showing (non-)membership of all items in only one traversal of the
ADS. This reduces the server computation, the communication, and the client verification, though not asymptotically.
These ADSs suit the authenticated range queries well. FlexList [31] is an ADS with multi-proof capabilities.

3. Hierarchical Authenticated Data Structures

The Hierarchical ADS (HADS) is an ADS consisting of multiplelevels of ADSs. Each ADS at leveli is constructed
on top of a number of ADSs at leveli +1. Each element of an ADS stores the digest of an ADS at a lower level.
Therefore, multiple ADSs with different underlying structures can be linked together to form an HADS with multiple
levels. The data stored at the bottom-most level are linked to the digest of the topmost ADS through the (data stored
at) the internal ADSs. The client stores the digest of the topmost ADS as metadata through which she can verify
authenticity of all data stored in the HADS. Figure4apresents a two-level HADS instantiation (based on Figure1)
using authenticated skip list a the first level and Merkle hash tree at the second level. The node storing a value, e.g.,
CS, ties the value to the digest of its respective second-levelADS, while being tied to the digest of its own ADS. Figure
4b shows a general four-level HADS architecture to store a database (the ADSs are represented as tree for simplicity,
but they can be of any type as long as they can store digest of the corresponding lower level ADSs).

An HADS schemeis an ADS scheme defined with three PPT algorithms(HKeyGen,HCertify,HVerify) to
distinguish them from non-hierarchical ADSs. Definitions in Appendix A(using HADS algorithm names) provide a
formal framework for HADS schemes.

3.1. HADS Construction

We construct an HADS using (possibly different) ADSs at multiple levels in a hierarchical structure. First, all
lowest-level ADSs are constructed using the data. Then, these ADSs are grouped according to some relation, and their
digests together with information about their location andthe data of the upper level are used to build the upper-level
ADSs. This process is followed until a single ADS is built whose root is stored as metadata by the client.

To generate a membership proof, the client should provide the server with the required information directing the
traversal on the HADS at all levels. The server follows down the HADS until the last level, generates and combines
the proofs for all levels, and sends the resultant proof to the client. If ADSs with modification capabilities are used, a
similar recursive strategy is employed for provable modification (insertion, deletion, and update) as well.

We provide the input as a set of(key,value) pairs in such a way that the pairs needed for the upper levels appear
first. The process will begin on the topmost ADS, and be directed by input data customized to proper sub-ADSs at
each level. A query command needs only the keys, while a modification potentially requires both the keys and values.

3.2. HADS Operations

TheHKeyGen algorithm generates public and private key pairs for each level and combines all public keys into
pkHADS and all private keys intoskHADS (Figure5).

6

1: skHADS= pkHADS= {}; ⊲ Private and public key of the HADS.
2: for i = 1 to ndo ⊲ n is the number of levels of the ADS.
3: (sk, pk) = ADSi .KeyGen(1k); ⊲ Ask level i ADS to produce its security keys.
4: skHADS= skHADS∪sk;
5: pkHADS= pkHADS∪ pk;

6: Return(skHADS, pkHADS).

Figure 5:HKeyGen, run by the client.

1: Pown= Pchild = {}; ⊲ Proof of the current ADS and the combined proof of all children.
2: {(ADS′, {(key′, value′)})} = Find(key, value); ⊲ Output is null at leaves.
3: for each element e∈ {(ADS′, (key′, value′))} do
4: P= e.ADS′.HCertify(pk,cmd,e.(key′,value′)); ⊲ Ask each child compute proof.
5: Pchild = Pchild||P; ⊲ Combine the proofs.
6: Pown= Certify(pk,OP,(key,value)); ⊲ Compute this ADS’s proof (not hierarchical).
7: ReturnPchild||Pown; ⊲ The proof.

Figure 6:HCertify, run by the server.

HCertify performs the modification and proof generation on the HADS. Starting at the topmost ADS, it is re-
peated on all affected ADSs in the hierarchy. Each ADS generates its own proof,independentof other ADSs in
the same or other levels. Proofs of these ADSs are combined together according to their order in the hierarchy, as
presented in Figure6. For simplicity, we use another algorithm to find the sub-ADSs of a given ADS:

Find(key,value)→({(ADS′,{(key′,value′)})}) This is used to find the next level ADS(s) and the related inputvalue(s).
It traverses the current ADS with the providedkey(s) and finds the leaf node(s) storing address(es) of the ADS(s)
at the next level to continue with. Finally, it outputs the set of next-level ADSs and their(key′,value′) pairs.

The client usesHVerify as a recursive process to verify the proof. It first verifies the bottommost ADSs. If they are all
accepted, then it uses their digests together with the proofs of the above-level ADSs to verify the level above, and so
forth. Finally, when the upper-most level is reached and a single digest is obtained, it is verified against the metadata.

4. Outsourced Database Scheme

An outsourced database requires certification and verification algorithms, similar to an ADS.

Definition 1. An outsourced database scheme consists of three PPT algorithms (OKeyGen,OCertify,OVerify):

• OKeyGen(1k)→ (sk, pk): is a probabilistic algorithm run by the client to generate apair of secret and public
keys(sk, pk) given the security parameter k. She keeps both keys, and shares only the public key with the server.

• OCertify(pk,cmd)→ (ans,π): is run by the server to respond to a command cmd issued by the client. It
produces an answer ans and a proofπ that proves authenticity of the answer. If the command is a modification
command, the answer is empty, and the proof shows that the modification is done properly.

• OVerify(pk,sk,cmd,ans,π ,st)→ ({accept,reject},st′): is run by the client upon receipt of the answer ans
and proofπ for a command cmd. It outputs an ‘accept’ or a ‘ reject’ notification. If the command intended a
modification and the verification result is ‘accept’, the client updates her local metadata accordingly (to st′).

Definition 2 (ODB security game). There are two parties playing this game: the challenger who acts as the client,
and the adversary who plays the role of the server.

Key generation The challenger generates the private and public key pair(sk, pk) usingOKeyGen. She keeps both
keys locally, and sends the public key to the adversary.

Setup The adversary specifies a command cmd (either a query or a modification) together with an answer ans and
a proof π , and sends them to the challenger. The challenger runs the algorithm OVerify, and notifies the
adversary about the result. If the command was a modificationcommand, and the proof is accepted, then the
challenger applies the changes on her local metadata. The adversary can repeat this interaction polynomially-
many times. Let D be the database resulting from verified commands.

7

Challenge The adversary specifies a command cmd′, an answer ans′, and a proofπ ′, and sends them to the challenger.
He wins if the answer ans′ is different from the result set of running cmd′ on D, and(cmd′,ans′,π ′) is accepted.

Definition 3 (ODB Security). We say that an ODB scheme is secure if no PPT adversary can win the ODB security
game with non-negligible probability.

The ODB security game covers all the specified guarantees: correctness, completeness, and freshness. The game
requires that no adversary can return a query answer together with a valid proof such that the returned answer is differ-
ent from the answer that would have been produced by the actual database. If any one of the freshness, completeness,
or correctness guarantees were to be invaded, the adversarywould have won the game.

4.1. Generic ODB Construction

A generic way to construct an ODB is to employ a regular DBMS, together with a DBAS built using a number of
ADSs. A common problem among all previous ODB schemes is the existence of duplicate values in non-PK columns,
since making an ordered ADS (which is necessary for range queries) requires a total order on the data items. The
existing solutions [7, 8, 10, 15] are not efficient (see Section7). Our HADS solves the problem efficiently, and easily
generates proofs for the answers to multi-dimensional queries (and join queries in Section5).

The result set of a query with a clause on a non-PK column containing duplicate values will potentially include
some duplicate values in that column. To identify these records and compare them with the result set of the other
clauses, we can relate each record to its respective (unique) PK.

Definition 4. PK-set. For each distinct value vi in a non-PK column C of a tableT, the set of all PK values cor-
responding to vi in all records ofT is called the PK-set of vi , and represented as PKT,C(vi), i.e., PKT,C(vi) = {k j ∈
PK(T) : ∃ record R∈ T s.t. k j ∈ R.PK∧vi ∈ R.C}. WhenT and C are clear from the context, we just write PK(vi).

The PK-set includes only the PK values, not the whole records. Any membership scheme can be used for assigning
the PK-set to a non-PK value regarding the client and server processing power and communication requirements of
the intended application. The only difference is the type ofproof that is generated by the server and verified by the
client. This brings the flexibility to support multiple membership schemes, and select the best fitting one.

We construct the DBAS as follows: Since all values in the PK column(s) are distinct, we use a regular (single-level)
ordered ADS to store their security information, similar tothe ones presented in [3, 14]. An example ADS for storing
the PK column of theStudent table using an authenticated skip list is presented in Figure3a. For a non-PK column,
for simplicity, a two-level HADS stores the security information: the distinct values are located at the first (upper)
level (i.e., each unique value is stored exactly once, without any duplicates), and the corresponding PK-sets of these
values are located at the second (lower) level. A sample HADSfor storing theMajor column of theStudent table is
illustrated in Figure4a. It uses an authenticated skip list at the first level, whose leaves are tied to Merkle hash trees at
the second level storing the corresponding PK-sets.

The client locally stores the digests of the HADSs of each searchable column as metadata. Later, she checks the
authenticity of server’s answers against these digests. This method requires the client to store digests in the number
of searchable columns in the database. As an alternative design, the client can put the digests of searchable column
of each table in another ADS (the table ADS), and on top of themmake another ADS (the database ADS) just as
in Figure4b. Then, she needs to store only the digest of this new (four-level) HADS as metadata. One may further
extend this idea to multiple databases a user owns, and then multiple users in a group, and so forth. By increasing the
number of levels of the HADS, it is possible to always make sure the client stores a single digest. This presents a nice
trade-off between the client storage and the proof-verification performance. For the sake of simple presentation, we
will employ two-level HADS constructions.

Authenticated reange queries ensure completeness of the result. Freshness is provided through storing the HADS
digest(s) at the client side. For correctness, we store hashof the corresponding record,h(record), with each PK. In flat
ADSs like the accumulator, the hash values are tied to the elements, while in tree-structured ADSs, the hash values are
stored at the leaves. The ADS of the PK column of a tableT is built using the set of all PK values and hashes of their

records{(pki,h(recordi))}
|T|
i=1 as (key, value) pairs. For a non-PK searchable columnCj of a tableT with d distinct

values{vi}
d
i=1, the HADS is constructed as follows: For each distinctvi ∈Cj , a second-level ADS is built using the

(key, value) pairs{(pks,h(records))}, wherepks∈ PK(vi). Then, a first-level ADS storing pairs{(vi,h(h(vi)||h(digest
of the respective second-level ADS)))} is constructed.

8

The client outsources these (H)ADSs along with the database, while keeping their digests locally. Later, upon
receipt of a proof and answer, she performs the verification using the information given in the proof and the records in
the result set. If all records are used (discussed in Section4.1.1) and the proofs verify according to the local digests,
the client accepts the proof and the answer.

HADS proofs. The HADS membership proofs for non-PK columns consist of two parts: the first part proves the
(non-)existence of theuniquevalue(s) in the column, and the second part ties each value tothe respective PK-set.
A key difference with a regular ADS is that after showing the existence of a value in the first-level ADS, all values
in the related second-level ADS (storing the related PK-set) should be included without further computation, since
they all share the same value in the queried column. This reduces both the proof size (communication) and proof
generation time (server computation). But the client verification cost for HADS is very close to ADS, since she needs
to reconstruct the whole second-level ADS along with the membership path in the first-level ADS. For the ADS, the
client reconstructs the whole sub-tree consisting of the values in the proof. Both asymptotically and based on our
performance measurements, those are equivalent tasks.

Consider a table withd distinct values in columnCj , each repeatedr times, on average, leading tord records in
total. Using a duplicate elimination mechanism [7, 8, 10, 15], we can store such a table inside a regular ADS. The
HADS builds a first-level ADS of sized, whose leaves are each connected to a second-level ADS of size r, leading to
HADS sizerd. Therefore, the server storage remains the same. However, the ADS proof size and proof generation
time of query forvi ∈Cj are bothO(logrd+ r) = O(logr + logd+ r), while those of the HADS are bothO(logd+ r).
The ADS uses a range query withO(logrd) cost, while the HADS needs to findvi at the first-level ADS with cost
O(logd). They both then accessr consecutive values as the result set. This is further detailed in Section4.1.1.

4.1.1. Proof Generation
We now provide details on how the DBAS generates proofs. We consider different cases where the query has only

one clause, or multiple clauses. For each case we discuss howthe proof is generated, and what is included in the proof.
One-dimensional queriescontain only one clause. There are two possible cases:
• The clause is on the PK column: For example, the query isSELECT * FROM Student WHERE StdID >

105. The server asks the HADS of the PK column of theStudent table to compute and return its range proof,
and sends it back to the client. The proof includes theboundaryrecords, and all internal nodes’ values required
for verification at the client. Figure3b depicts an example, using authenticated skip list as the underlying
ADS, where the result set is (106, 107, 108), and the boundaryrecords are 105 and+∞. The proof looks like:
vo=‘h1,h2,h(104),105,106,107,108,+∞’.

• The clause is on a non-PK column: A sample query isSELECT * FROM Student WHERE Major=‘CE’. The
server uses the HADS of theMajor column to findCE at the first level. If not found, he puts the non-membership
proof invo. Otherwise, he puts theCE’s membership proof and all values in its PK-set in thevo. Due to storing
duplicate-eliminated data, the first-level ADS is very small, and all values in the second-level ADS are used
without further computation. The proof looks like:vo=‘h(−∞),CE(101,102,106),h′5,h(+∞)’, using Figure7.

Multi-dimensional queries. For each clause, the server asks the corresponding HADS to give its proof, collects
them into the verification objectvo, and sends it to the client. Upon receipt, the client verifiesall proofs one-by-one,
and accepts if all are verified. If the clauses were connectedby ‘OR’, each proof verifies a subset of the received
records, and the result set should be the union of all verifiedrecords. For ‘AND’, each proof verifies a superset of
records in the result set, and the answer is the intersectionof results of individual clauses. The ‘AND’, ‘OR’, and
‘NOT’ operations among clauses are handled as set intersection, union, and complementation on the authentic PK-sets
given by the proof. The resulting set of records must be the same as the result set. An important distinction between
our HADS and many previous schemes [7, 12, 15, 32] is thatour proofs can be compared and combined togethervia
simple set operations, since they authenticate PK-sets.

• One clause on the PK, the other(s) on a non-PK column: For example, the query isSELECT * FROM

Student WHERE StdID>105 AND Major=‘CE’. Since the order of clauses is not important for the proof,
we can consider the non-PK clause first, then apply the PK clause on the results. Therefore, the server first
applies the non-PK clause on the corresponding first-level ADS, and then, applies the PK clause on the resultant
second-level ADSs. Finally, he adds them both to thevo, and sends it to the client. On Figure7, this method
produces the proofvo=‘h(-∞),CE(h(101),102,106),h′5,h(+∞)’.

9

• Both (all) clauses on non-PK columns: A sample query isSELECT * FROM Student WHERE BCity=‘Istanbul’

AND Major=‘CE’. The server generates one proof for each clause, each containing the first-level ADS proof for
the value itself (e.g.,Istanbul andCE) and the respective PK-set, and sends it to the client insidethevo. Each
proof proves authenticity of a set of PK values (of the same table) that can be combined and compared together
using proper set operations (intersection, union, and complementation).

The above process can be generalized to more than two clausesand supports any combination of ‘AND’, ‘OR’,
and ‘NOT’ operators. The client verifies the proofs and accepts the answer if the result matches the result set. Note
that in all our proofs,no additional records are sent to the client on top of the result set of the original query.

4.1.2. Illustrative Examples
We give some examples to better understand our construction.

Figure 7: Proof generation forSELECT * FROM Student

WHERE Major=‘CS’ and StdId=103.

Selection in a two-level HADS. Figure 7 presents
an example showing proof generation with a two-level
HADS, for the query SELECT * FROM Student WHERE

Major=‘CS’ and StdId=103 translated by DBAS into
‘(Student,{(Major, {CS}),(StdId, {103})})’. The
first level is an authenticated skip list containing unique val-
ues of theMajor column, and the second level has three
Merkle hash trees containingStdId values matching each
Major value (i.e., their PK-sets). The first-level ADS needs
to prove membership ofCS. This can be done by returning
‘h′1,CS,h(EE),h(+∞)’; essentially the searched value together
with the hashes of the nodes required to obtain the correspond-
ing digest. At the second level, the Merkle tree needs to prove
membership of103. This is done by returning ‘103,h(105)’.

The generated verification object will look like:vo=‘h′1,CS(103,h(105)),h(EE),h(+∞)’.

Figure 8: Proof verification forvo=‘h1,
h2,h(104),105,106,107,108,h(+∞)’.

Verification is done in a bottom-up manner. The client verifies the PK-
sets’ proofs. If all are verified, it goes on to use them for verifying the
column ADSs’ proofs. If this step also was successful, its results are used
to verify proofs of the table ADSs. The database ADS proof is verified
in a similar manner. If all proofs are verified employingall andonly the
records in the answer, the client accepts the answer as authentic.

Since verification is accomplished similarly at all levels,we give
an example showing verification in the ADS of Figure3b, where
vo=‘h1,h2,h(104), 105,106,107,108,h(+∞)’ is the proof given for ‘SELECT
* FROM Student WHERE StdID>105’. The verification algorithm ex-
tracts the result set{106,107,108} and boundary records{105,+∞},
checks if 105<106<107<108<+∞, and computes the hashes of records
in the result set (step 1). Then, it uses h(104) to compute h′3 (step 2). In
the step 3, it uses h′5 and h(107) to compute h′5, which is used together
with h2 to compute h′4, which in turn, is used along with h1 to compute

h′6. Finally, it uses h′6 and h(+∞) to computes h′7, the digest of the computed ADS. Now, it compares h′7 against the
digest stored locally (h7). This process is illustrated visually in Figure8. Note that, a full proof would also contain
information about the levels of these nodes in a skip list, but those parts are hidden for simplicity.

5. Join

In relational database systems, data is organized (divided) into a set of tables. Thejoin operations are then used
to collect data from two (or more) tables to produce new results. In outsourced databases, the server should perform
the join and generate the proof that will be verified by the client. The server can utilize any existing optimal join
algorithm, since we put no restriction on the DBMS part. Instead, we design our DBAS proof generation algorithms
to produce efficient proofs minimizing the servers effort, the communication, and the clients computation.

10

5.1. Overview

Our join algorithms use HADSs for both (all) tables that are built on the columns on which the join is formed.
Since the HADSs keep the same relationships among the (values of) tables they are created for, we can generate
proofs proving correctness of those relations.

Without loss of generality, consider the (most widely used)one-to-many relationship:R ⋊⋉rid=rid S, i.e., the PK
column ofR, rid , is used as a foreign key inS. R contains only distinct values in columnrid , while S may contain
duplicate values. The HADS ofS ties each distinct value inrid to its respective PK-set inS. Now, we can easily
compare the ADS ofR built on rid with the first-level ADS of the HADS ofS (storing unique values) built onrid ,
and generate efficient proofs. (Note that only the first-level ADS of the HADS, which is very small in size, is used for
comparison, and in case of any match, all values in the respective second-level ADS are reflected into thevo without
further computation.) Since the values are stored sorted, the server traverses each ADS only once.

Efficient proof generation. Compared to [2, 20] that perform a range query on the second table for each valueof
the first table, our solution is much more efficient as it converts range queries into equalities for matches. In [1] that
uses range queries efficiently, for each value in the ADS of one table, the set of matching values in the ADS of the other
table is surrounded bytwo morerecords, for completeness. Since we store and compare unique values in HADSs, a
value in the (H)ADS of one tableeither matches exactly onevalue in the (H)ADS of the other table (as shown by
equality invo), or does not match anyvalue in the other (H)ADS (shown using range queries). In addition, the first-
level ADSs that we use for proof generation are much smaller compared to those of all previous work, reducing the
proof size and proof generation time.

Other join types. Our HADS-based solution supports non-equi-join and multi-way join as well. Although an
inefficient way of doing a non-equi-join betweenR andS is performing a range query onS for each record inR,
our non-equi-join algorithm traverses each HADS only once,and is very efficient. Our algorithm for multi-way join
queries can be generalized to support queries of the formR⋊⋉a=a S⋊⋉a=a T⋊⋉a=a ..., betweenn tables.

5.2. Two-way Join

Consider equi-join on two tablesR andS represented asR ⋊⋉Ci=Cj S, whereCi andCj are columns ofR andS,
respectively. The HADSs of these columns will be used for proof generation. We categorize possible cases and
discuss each one separately.

Either C i or C j is a PK column that is used as foreign key in the other table. The generatedvo is a set of PKs that
can be used for comparison or combining with othervo’s.

The server usesHADSR(Ci) andHADSS(Cj) for proof generation. He starts by the smallest value (e.g.,leftmost
leaf node in a tree-based ADS) in the first-level ADS of one of the HADSs, and searches for that value, sayvi , on
the other HADS. If the value is found on the other HADS, both values are inserted into thevo showing a matching.
Otherwise, the boundary records (the twoconsecutivevalues on the other HADS thatvi would have been located
between them), together with thevi , are inserted into thevo. This shows thatvi has no matching on the other table.
Once finished working on it, he jumps to the nextexpectednode. By the expected node, we mean a node that either
is immediately after the current node or stores the closest value to the current value of the other HADS. If the current
and expected nodes are not successive, then the required intermediate information (e.g., for authenticated skip list,the
levels and digests corresponding to a part of the ADS not included in the proof) needed for verifying the ADS by the
client, will be added to thevo. We use the algorithmFindNext to find the expected node:

FindNext(vi)→ (nodej ,nodek) If vi is null, then return the node immediately following the current node asnodej

(nodek will be null). Given a valuevi , if a node storingvi is found, add the required information of the interme-
diate nodes into thevo and return the node storingvi asnodej (nodek will be null again). Otherwise, add the
needed information of the intermediate nodes into thevo and return the twoconsecutiveboundary nodesnodej

andnodek storingv j andvk, respectively, such thatv j < vi < vk.

Consider the joinStudent⋊⋉StdId=StdId S2C, where both tables have an HADS on columnStdId: HADSStudent(StdId)
andHADSS2C(StdId). The proof generation works as follows: Traverse both HADSsuntil the leftmost leaf node (at
the first level) storing the valuesv1 (in HADSStudent(StdId)) andv′1 (in HADSS2C(StdId)). Possible cases are:

• v1 = v′1: Add them into thevo (showing a matching), run theFindNext() on both HADSs to find the next
valuesv2 andv′2, and repeat the process withv2 andv′2.

11

• v1 6= v′1: Add the larger value, sayv1, into thevo and runHADSS2C(StdId).FindNext(v1) to find a matching
on HADSS2C(StdId). If it returns one node,nodei, a matching has been found, repeat the process withv1 and
nodei.val. If it returns two nodes,nodej andnodek, there is no matching, but the value ofnodek may match that
of the node next tov1. Hence, addv1, nodej .val, andnodek.val into vo and repeat the process withnode2.val
andnodek.val, wherenode2=HADSStudent(StdId).FindNext() is the node next tov1.

Figure 9: HADS ofStdId (tableS2C).

Example. Using HADSStudent(StdId) from Figure 3a and
HADSS2C(StdId) from Figure 9, we generate proof forStudent
⋊⋉StdId=StdId S2C. For simple presentation, we put in thevo only the
values and hashes stored on nodes, and leave out the other informa-
tion required for verification (e.g., the level in an authenticated skip
list). Furthermore, we separate each round by a column ‘:’, parts
belonging to each HADS inside a round by a semi-column ‘;’, and
values inside each part by a comma ‘,’. Within a round, valuesof
HADSStudent(StdId) appear first.

We start with the smallest values in the HADSs:v1 = 101 and
v′1 = 101. Since there is a matching, 101 is added into thevo
(vo=‘101;101(501,502,504)’). Then, theFindNext() is run on both

HADSs to find the next values:v2 = 102 andv′2 = 103. Sincev′2 > v2, 103 is inserted into thevo and
HADSStudent(StdId).FindNext(103) is executed (during whichh(102) will be added into thevo as an interme-
diate value, resulting invo=‘101;101(501,502,504) : h(102);103(503,504)’), returning the node storingv3 = 103.
Due to the matching, 103 is again added into thevo (vo=‘101;101(501,502,504) : h(102),103;103(503,504)’),
and FindNext() is run on both HADSs that will result in: v4 = 104 and v′3 = 106. Again, 106 is
added into thevo and HADSStudent(StdId).FindNext(106) is executed (during whichh(104),h(105) will be
added into thevo as intermediate values, resulting invo=‘101;101(501,502,504) : h(102),103;103(503,504) :
h(104),h(105);106(500,502,504)’), returning the node storing v6 = 106, to be added into thevo due to the match-
ing. Then,FindNext() is executed on both HADSs, which will give:v7 = 107 andv′4 = 108. 108 will be added
into vo andHADSStudent(StdId).FindNext(108) results inv8 = 108. Finally,vo will be vo=‘101;101(501,502,504)
: h(102),103;103(503,504) : h(104),h(105),106;106(500,502,504) : h(107),108;108(501,503)’.

Figure 10: Non-PK join.

Neither Ci nor C j is a PK column. Each column is stored inside an HADS. If
each distinct value ofCi andCj has an average PK-set of sizen andm, respectively,
with k matching records, the result set will haveknmrecords. Our proof is of size
O(k(n+m)), showing again the HADS proofs are efficient.

Imagine two tablesT1 andT2, both having an integer PK column and a non-PK
column of type character with two matching values ‘B’ and ‘F’, whose HADSs
are shown in Figure10. The algorithm, starting at the leftmost nodes of both
HADSs, finds out that B>A, and executesFindNext(‘B’) on T1, leading tovo=
‘h(−∞), r1,B(102,104, 107);h(−∞),B(3562)’. It goes on, putting intermediate
value h5 in thevo, finds another matching ‘F’, which is the last node inT1.
Later, FindNext(‘F’) on T2 puts h6 invo, and realizes that both columns are
fully traversed. These steps yieldvo=‘h(−∞), r1,B(102,104,107);h(−∞),B(3562) :
h5,F(105,108);F(8759,9658) : h(+∞);h6,h(+∞)’.

For verification, the client interprets the proof invo, and investigates whether
the values in each step are either equal, or one is between thetwo others. If it is
correct, she adds them to the corresponding ADS list, and goes on with the next

step proof (any problem leads to rejection). Finally, she uses theHVerify() function of the (H)ADS to verify the two
ADS lists. If both passed the verification successfully, sheaccepts the proof, otherwise, rejects.

5.3. Queries with Join and Selection

The general query optimization rule for queries containingvarious operations is that the join operation is performed
after all selection operations, since the selection operations result in intermediate sub-tables (given as input to the join
operations) that are likely to vary substantially in size [38]. Since our proofs are all based on PK-sets, the results of

12

the selection queries are integrated easily into those of join queries, resulting in small proofs (both communication and
computation). We distinguish the following cases:

• The selection uses the same column as the join. The same HADSs are used to generate proofs for both
selection and join, i.e., the records in the result set should satisfy the selection constraint in addition to the
join constraint. For example, the proof generation for query SELECT * FROM Student S, S2C C WHERE

S.StdId=C.StdId and S.StdId > 105 starts from the node storing the value 104 (the boundary record),
and both clauses are applied simultaneously during the join.

• The selection uses different columns from the join. The selection proof is generated first that results in an
authenticated set of PKs. Then, if this is connected to the join clause with ‘OR’, the proof of the join clause
is generated independently, and both proofs are sent together to the client. But for ‘AND’, the join proof-
generation algorithm should consider only those records that are in the selection proof, instead of the whole
table, leading to smaller join proofs. The server runs the algorithm on sorted authentic PK-set resulting from
the selection proof, and the other table’s HADS. For each PK value in the sorted authentic PK-set, if there is a
matching on the corresponding HADS of the other table, we reflect it on the proof. Otherwise, we supply a non-
membership proof. Taking the querySELECT * FROM Student S, S2C C WHERE S.StdId=C.StdId and

S.Major =‘CS’, for instance, the selection proof supplies the sorted authentic set of PK values{103,105},
used together with tableS2C by the join proof-generation algorithm to compute the (smaller) join proof.

5.4. Multi-way Join
Since data is distributed over multiple tables, users may issue queries with join on multiple tables, e.g.,T1 ⋊⋉Ci=Cj

T2 ⋊⋉Ck=Cl T3 ⋊⋉ ..., to combine them back together. Yanget al. [1] performed the three-table join as((T1 ⋊⋉Ci=Cj

T2) ⋊⋉Ck=Cl T3) or (T1 ⋊⋉Ci=Cj (T2 ⋊⋉Ck=Cl T3)). But the output of the join that is performed first is not a table having
an ADS on the column of the next join. Therefore, their AIM join algorithm is not applicable, and their AISM join
algorithm (which uses only one ADS on one table) is used instead. Essentially, they apply their AIM algorithm for the
first join, followed by AISM.1 We treat the case that all joins are on the same column separately from the case that the
columns differ, and present efficient solutions for all suchscenarios.

Figure 11: Proof generation forT1 ⋊⋉a=a T2 ⋊⋉a=a T3.

Multi-way join on the same column. As noted
by Ramanet al. [39] and Yanget al. [1], these queries
are common in data warehousing applications, where
a fact table is joined with other tables, on the same
column. Our algorithm performs much better for the
multi-way join with all join clauses on the same column:
T1 ⋊⋉a=a T2 ⋊⋉a=a T3 ⋊⋉a=a With slight changes, it can
be generalized to support multi-way join amongn tables.

We start by the smallest value in all HADSs. If all are
the same, this is reflected in thevoas a matching. Other-
wise, the maximum value among them,vmax, is selected
and added into thevo and all other HADSs are queried
(i.e.,FindNext(vmax)) to either find a matching, or prove
non-existence of the value. This is repeated until the last

node of either HADS is met. The verification object is then finalized with the remaining intermediaries. Each HADS
is traversed exactly once, and no item is checked multiple times. Jumping to the maximum value when no matching is
found enables skipping the largest possible number of nodes, providing an optimally efficient proof.

An example showing our proof generation forT1⋊⋉a=aT2⋊⋉a=aT3 is given in Figure11. It starts by the leftmost
nodes: 1,1,5. Since 5 is the maximum,FindNext(5) is run on bothT1 andT2, leading tovo=‘h(−∞),h1,h(4),5;h2,h(3),5;
h(−∞),5’. Then, it jumps to and processes the next nodes, which are 6,9, 7, and thus continues byFindNext(9) on
T1 andT3. Following the same logic, it finally outputsvo=‘h(−∞), h1,h(4),5;h2,h(3),5; h(−∞),5’ : h(6),9;9; h(7),9 :
h(15),16, 18;14,19;17 :19;19;19 : h(20),h3, h(+∞);h(20),h4,h(+∞);h(+∞)’.

1Their algorithms are not directly applicable for multi-join case, so, they gave new versions m-AISM, m-ASM, and m-AIM. They require prior
information about the third table for reducing the proof size of the first join, between the first and second tables, beforethe second join is performed.

13

(a) The sample database. (b) T3 refers toT2 who refers toT1. (c) BothT1 andT3 refer toT2.

Figure 12: Ordering graphs for different cases.

Multi-way join on different columns . Since our proofs are composed of a set of PKs, we can compare and
combine them together. To perform a multi-way join, we separate it into a set of two-way joins (with selections, if
there exists any), and apply our two-way join algorithm as described previously. For a query withn joins, we generate
and sendn proofs to the client who verifies them, and accepts the answerif all proofs are verified. Note that the result
set is just the actual join result, not individual table items.

To perform a multi-way join of the formT1 ⋊⋉Ci=Cj T2 ⋊⋉Ck=Cl T3, one way is to deal withT1 ⋊⋉Ci=Cj T2 indepen-
dently fromT2 ⋊⋉Ck=Cl T3, and generate the proofs directly using the HADSs. Another way is to perform one of them
first, and use its result, which is an authentic PK-set, to generate the next proof. This means the proof for each join
depends on the previous join, which depends, on the preceding one. Since a join leaves out some records, using its
result for the next join is expected to generate smaller proofs. Thus, we can perform the joins according to an order that
generates efficient proofs. We categorize the possible cases and investigate how an efficient ordering can be employed.

Efficient ordering . We define theordering graphas a directed graph to show the relationship between the tables
and use it to determine the order of joins. The joined tables constitute the vertices, and an edge fromTi to T j indicates
that tableTi contains a column that refers to a column inT j (and the join is on these two columns). The ordering graph
of our database model (Figure1a) is represented in Figure12a.

Consider the case in Figure12b: We should perform theT2− T3 join first, followed byT1− T2 join. The reason
is that theT2−T3 join results in an authentic set ofT2’s PKs that can be used in theT1−T2 join (that is onT2’s PK),
while the result ofT1−T2 join (authentic sets of PK values of tablesT1 or T2) cannot be used inT2−T3 join that is on
T3’s PK. Hence, performing theT2−T3 join first, generates efficient proofs.

In Figure12c, bothT1 andT3 use the PK ofT2 as foreign key. Therefore, both joins are onT2’s PK, and the order
of joins does not matter. We perform either join first, determine the authentic set of PKs ofT2 contributing to the join,
and do the other join between this authentic set and the othertable. Figure12ais also dealt with similarly. As both
joins output an authentic set of PK values ofS2C, the other join can be easily handled using this set and the other table.

Multi-way joins can be divided into a set of two-way joins, and the mentioned categories are used to determine the
order in which these joins should be performed to generate efficient proofs. In cases where the order is not important,
the DBAS can use the table sizes and database optimization techniques to estimate the result size, and select the one
with small expected size [38, 40, 41].

6. Security Analysis

Theorem 1 (Security of HADS). Our HADS construction is secure according to Definition8 (employing HADS al-
gorithm names) if the underlying ADSs are secure.

Proof 1. We reduce security of the HADS scheme to the security of underlying ADSs. If a PPT adversaryA wins the
HADS security game with non-negligible probability, we canuse it to construct a PPT algorithmE who breaks the
security of at least one of the ADS schemes, with non-negligible probability. E acts as the server in the ADS games
with the ADS challengersC1, ...,Cn, and simultaneously, plays the role of the challenger in theHADS game withA.

Setup. E receives the ADS public keys from the respective challengers, and forwards them altogether toA. The
adversaryA prepares a dataset D and gives it toE who employs the ADS challengers to generate the HADS containing
the security information, and sends it back toA. E keeps a local copy of D and the HADS. Note that this is invisible to
the adversaryA, and thus will not affect his behavior.

Query. A performs polynomial-many membership and update queries. Amembership query is accompanied with
the potential answer and proof, while an update query includes information about the update.E verifies the proofs of
membership queries and notifiesA about the results. For update queries,E asks the ADS challengers to prepare their
corresponding updates and sends them toA. E also updates her local copies of D and the HADS accordingly.

Challenge. A chooses a membership query q, and gives it together with an answer aq to E. A wins ifE accepts
the aq while it differs from the real answer of the query q.

14

For A to win, aq must be different from the real answer for at least one ADS, ADSi, with its verifying sub-proof.E
can find it through her local copy. Upon receipt of aq, E selects the membership query, answer and proof parts related
to ADSi , and forwards them toCi . AssumeA passes the HADS verification with non-negligible probability p. (This
corresponds to the verification probability of ADSi as the others would be verified with probability one.)E also passes
ADSi ’s verification with probability non-negligible p, breaking the security of ADSi .

Since we employ secure ADSs, p must be negligible for all ADSs, and the adversaryA has negligible probability
of winning the HADS game. Therefore, if the underlying ADSs are secure, the HADS scheme is secure.

Theorem 2 (Security of the ODB scheme).Our proposed ODB scheme is secure according to Definition3, provided
that the underlying HADS scheme is secure.

Proof 2. We reduce security of the ODB scheme to the security of the underlying HADS2. If a PPT adversaryA wins
the ODB security game with non-negligible probability, we can use it to construct a PPT algorithmE who breaks the
security of HADS scheme with non-negligible probability.E acts as the server in the HADS game played with the
HADS challengerC, and simultaneously, plays the role of the challenger in theODB game withA.

Setup. E receives the HADS public key fromC, and relays them on toA (note that all HADSs built for each
searchable column will use the same key). The adversaryA prepares a database and hands it on toE who relays them
on to the HADS challengerC. C generates the security information in the form of HADSs and forwards them back to
A throughE. E keeps a local copy of the database and the HADSs.

Query. A performs polynomial-many selection and update queries. A selection query is accompanied with the
potential answer and proof, while an update query includes information about the update.E verifies the proofs of
selection queries and notifiesA about the results. For update queries,E askC to prepare the respective HADS updates
and sends them toA. E also updates her local copy accordingly.

Challenge. A chooses a selection query cmd, and gives it together with an answer ans toE. A wins ifE accepts
the answer ans while it differs from the real answer of the query cmd.

If A wins the ODB security game with non-negligible probability, we can use it to break the security of HADS
scheme with non-negligible probability. For the adversaryto win, ans must be different from the real answer on at
least one HADS, HADSi, but with a verifying proof. On receipt,E selects the command, answer and proof parts related
to HADSi from ans (she can find it since she maintains a local copy), andforwards them toC. If A passes the ODB
verification with non-negligible probability p,E can pass the HADS verification (i.e., break HADS security) with the
same non-negligible probability p. (This is because all other HADS proofs will be verified with probability one, and
we only consider the verification probability of HADSi that is p.)

Since we employ a secure HADS, p must be negligible, which implies the adversary has negligible probability of
breaking ODB. Therefore, our ODB scheme is secure (and provides the required properties: correctness, completeness,
and freshness), if the underlying HADS is secure.

The proof is not specific to our two-level construction. For afour-level construction (Section4.1.2), E plays the
HADS game with a four-level HADS challenger. In general, foran n-level ODB construction,E should play the game
with an n-level HADS challenger, in a same manner. The proof or the probabilities will not be affected by this change.
Moreover, it is possible that different HADS types are used within the same ODB. Identical proofs per HADS type can
be employed then, and as long as all underlying HADS schemes are secure, we would obtain a secure ODB scheme.

7. Performance Analysis

Setup. To evaluate our ODB scheme, we implemented a DBAS prototypeusing the efficient two-level HADS
construction, which uses FlexList [31] at both levels, in C++ using Cashlib library [42]. We employ SHA1 with 160-
bit digests as our hash function, and 1024-bit RSA as the digital signature scheme. All experiments were performed
on a 2.5GHz machine with 4GB RAM and Ubuntu 11.10 operating system. The numbers are averages of 10 runs.

Our DBAS is deployed on the same machine where the DBMS resides, and stores the database security infor-
mation. Dynamic queries (Insert,Update,Alter,...) affect this part as well, after being converted into the

2We assume all HADSs are similar, and hence, there is only one challenger. It is straightforward to extend it to the case with different HADS
instantiations and multiple challengers.

15

0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Tree−based
HADS, 10 duplicates
Tree−based, Range query
HADS, Range query
Aggregation−based

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

500

1000

1500

2000

2500

3000

Number of records in the query result

T
im

e(
m

s)

Proof generation time

Tree−based
HADS, 10 duplicates
Tree−based, Range query
HADS, Range query
Aggregation−based

(b) Proof generation time.

Figure 13: Proof generation time and proof size for one-clause queries.

(key, value)-based format. For example, the querySELECT * FROM Student WHERE major in (‘CE’,‘CS’)

and BCity=‘Istanbul’ is converted to(Student,{(major,{CE,CS}), (BCity,{Istanbul})}). We did not
implement a converter, but it should not affect the timing asits overhead is much smaller than the proofs.

We use a database containing three tables:StudentandCourse tables, each with 105 randomly-generated records,
andS2C table storing the courses taken by students, with 106 randomly-generated records. There are two scenarios:
each registered student has taken 10 courses in the first scenario, and 100 courses in the second scenario, on average.
(In the second case, not all students are taking courses since we only have 106 S2C records.) This means a distinct
StdId is used as a foreign key inS2C 10 times in the first scenario, and 100 times in the second scenario, on average.

We observe the system behavior (proof generation time and proof size) for different queries. Since proofs are
generated using only the hashes of values of column(s) forming the clause (not the whole records),the proof size is
independent of the record size. Our scheme enhances the efficiency by reducing the computation and proof size:

• The proofs are generated using only values of the required columns, and these values already exist in the DBMS
answer to the query.

• The concept of PK-sets divides a large ADS into small ADSs in ahierarchy. Hence, the proof size and the
computation time decrease as well.

• Using the PK-sets, there is a one-to-one correspondence forthe matching records, and there is no need for
boundary records. This is a very important property for computing boolean operations and join proofs easily.

Classification of previous work. We compare our scheme against two types of previous work. The aggregation-
based approaches [12, 20, 43] generate efficient proofs and may enhance server performance. They either do not
provide completeness [43] or have problems with dynamism and freshness [12, 20]. We evaluate the performance of
a prototype implementation of [20], denoted as ‘aggregation-based’ in our figures.

The tree-based approaches store the security information in tree-based ADSs, and use different methods for making
the duplicate values unique [7, 8, 10, 15] (and support dynamism). Since they produce the same numberof distinct
values (= number of records in the table),their ADS sizes are the same, leading to similar performances. For the sake
of comparison, we concatenated each duplicate value with a replica number as in [7] to implement a regular ADS and
compare against our HADS. This is referred to as ‘tree-based’ in our figures, and it corresponds to all these works, if
they use a similar underlying ADS.

7.1. Selection Queries on One Table

One-clause queries. We investigate the case that the clause is on a non-PK column(e.g.,SELECT * FROM

Student WHERE major=‘CE’). Since the number of distinct values in the non-PK column isless than that of the
PK column, the first-level ADS of the HADS storing a non-PK column is smaller than the ADS storing the same
column in tree-based existing schemes. (The second-level ADSs are included in whole, without any computation.)
Because some values are repeated on non-PK columns, whereasthe PK column contains only unique values. The

16

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Tree−based, two non−PK clauses
Tree−based, one PK and one non−PK clauses
HADS, one PK and one non−PK clauses
HADS, two non−PK clauses

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of records in the query result

T
im

e(
m

s)

Proof generation time

Tree−based, two non−PK clauses
Tree−based one PK and one non−PK clauses
HADS, one PK and one non−PK clauses
HADS, two non−PK clauses

(b) Proof generation time.

Figure 14: Proof generation time and proof size for queries with two clauses.

proof generation time and proof size for a non-PK clause using HADS are thus expected to be smaller compared to the
previous tree-based approaches. Figures13aand13bconfirm this, showing∼5x smaller proofs, and∼3x faster proof
generations. There is a∼10% efficiency gain even with range queries. The aggregation-based approaches generate
efficient (constant-size) proofs, with a server computation cost close to ours.

Two-clause queries. There are two cases: the query has either one PK and one non-PK clauses (e.g.,SELECT
* FROM Student WHERE StdID>105 AND major=‘CE’), or two non-PK clauses (e.g.,SELECT * FROM Student

WHERE BCity=‘Istanbul’ AND major=‘CE’). In the HADS of non-PK columns, all values of second-level ADSs
are included in the result (without further computation), hence the dominant factors are the proof generation time and
proof size of the first-level ADSs. We apply each clause on itsown HADS and generate two proofs to put invo.
Figures14aand14bshow the proof generation time and proof size for two-clausequeries. We observe∼2x smaller
proofs and∼1.5x faster proof generations using HADS, compared to previous tree-based approaches, for the case with
one PK and one non-PK clauses. For the case with two non-PK clauses, the proof is∼5x smaller in size, and∼3.5x
faster in generation time, compared to previous tree-basedapproaches.

Multi-clause queries. We can separate this case into two cases depending on whether one of the clauses is on the
PK column or none of them are. The server asks each HADS sequentially to give its first-level proof. The total proof
generation time and proof size of the server is the summationof the respective values taken by all HADSs. We are not
presenting any figures for this, but based on the results presented above, we expect similar gains. Indeed, the gains
would be even greater if all clauses are on non-PK columns.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of records in the query result

T
im

e
(m

s)

Client verification time

Tree−based
HADS with 10 duplicates
HADS with 100 duplicates
Aggregation−based

Figure 15: Client verification time.

Client computation. We observed the HADS enhances client
performance compared to the aggregation-based approaches[12, 20,
43], while posing similar performance as the tree-based existing
schemes [7, 8, 10, 15]. The reason is that while the server just puts
the whole second-level ADS into thevo, the client has to reconstruct
the second-level ADS and the proof path in the first-level ADS. The
computation at the second-level (first-level) ADS of our HADS is
very similar to that of the previous schemes at the lower (upper) part
of their ADSs. Hence, the total client computation using ourHADS
and previous ADSs are very close. In tree-based approaches,the
client has to verify all received ‘signatures’. These are illustrated in
Figure15for one-clause queries.

Overhead. Another important factor is the communication over-
head, i.e., how much does the proof increase the traffic. As the proof
size is independent of the record size, for tables with smallrecord

size (∼1 KB), the proof size is about 10-40% compared to the result size. As a real example, we used theStudent ta-
ble from Koç University database that stores (student ID, name, address, phone, email, standing, department, advisor,
photo) for each student. The records of this table are between 5 and 20 KB in size, where the photo size is dominant.
Using the HADS for proof generation imposes only 1-4% communication overhead. The results are shown in Figure

17

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Number of records in the query result

P
ro

of
 s

iz
e

/ q
ue

ry
 r

es
ul

t s
iz

e

Proof overhead on the query result

Record size = 1 KB
Record size = 10 KB

(a) Proof size overhead.

0 1 2 3 4 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of records in the query result

C
om

pu
ta

tio
n

tim
e

/ t
ra

ns
fe

r
tim

e

Proof generation and verification time overhead

1 Mbs
10 Mbs

(b) Proof time overhead.

Figure 16: Proof overhead and client verification time.

0 1 2 3 4 5

x 10
4

0

2000

4000

6000

8000

10000

12000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Tree−based
HADS with 10 duplicates
HADS with 100 duplicates

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

Number of records in the query result

T
im

e
(m

s)

Proof generation time

Tree−based
HADS with 10 duplicates
HADS with 100 duplicates

(b) Proof generation time.

Figure 17: Proof generation time and proof size (key-based join).

16a. Compared to similar algorithms such as [15] that requireO(logN+ t) cost for a query result of sizet, using range
queries, the cost of our algorithm isO(log|Ci |+ t).

For time overhead, we compared proof generation time plus client verification time to the total time taken for
preparing the result set (server) and the result set transfer time. This is, however, an upper bound since the proof
generation time normally overlaps with the server computation time. As Figure16bshows, using 1 Mbs and 10 Mbs
bandwidths, the time overheads of our scheme are only∼1% and∼14%, respectively.

7.2. Join Queries

We consider two cases. Inkey-based join, the stdID column of theStudent table is referred to in theS2C
table as a foreign key (e.g.,SELECT * FROM Student,S2C WHERE Student.StdID=S2C.StdID), while ingeneral
join, we add two unrelated columns of the same type toStudent andCourse for this join (e.g.,SELECT * FROM

Student,Course WHERE Student.TempCol1=Course.TempCol2).
In key-based joinscenario, we consider two cases. In the first case, each student has chosen 10 courses, therefore,

the first-level ADS stores the students, and for each one, a second-level ADS containing 10 elements stores the selected
courses. The first-level ADS contains all 104 student IDs. In the second case, each student has taken 100 courses,
therefore, a second-level ADS containing 100 courses is linked to each first-level ADS. The first-level ADS in this
case is smaller, containing 103 records. The experimental results are shown in Figures17aand17b. The figures show
∼2.5x enhancement for both proof size and proof generation time in 10-course case. There are∼4x smaller proofs
and∼6x faster proof generations in 100-course case, compared tothe tree-based works.

18

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Number of records in the query result

P
ro

of
 s

iz
e

(K
B

)

Proof size

Tree−based
HADS with 10 duplicates
HADS with 100 duplicates

(a) Proof size.

0 1 2 3 4 5

x 10
4

0

1000

2000

3000

4000

5000

6000

Number of records in the query result

T
im

e
(m

s)

Proof generation time

Tree−based
HADS with 10 duplicates
HADS with 100 duplicates

(b) Proof generation time.

Figure 18: Proof generation time and proof size (general join).

We observe a similar behaviour for the general join scenario, where each value in temporary columnsTempCol1

andTempCol2 is duplicated about 10 or 100 times, similar to our main scenario. Figures18aand18b show the
experimental results. The proof sizes are reduced∼3x and∼4x in 10-element and 100-element cases, respectively.
The proof generation times are decreased∼2x and∼5x in 10-element and 100-element cases, respectively.

Asymptotic complexity. Moreover, the cost of the approach proposed by Liet al. [2] for joining two tablesT1

andT2 of approximate sizeN is O(N logN), while that of ours isO(N+N) = O(N). Compared to [1] which has the
same asymptotic costO(N), our HADS generates more efficient proofs as it does not use the boundary records for the
matching records, in addition to the fact that it operates onsmaller ADSs. Assume thatα|Ci |,0≤ α ≤ 1, records of a
column have matching on the other table. The cost of our join algorithms using HADS isα|Ci |∗N/|Ci |+(1−α)|Ci |=
αN+(1−α)|Ci|, which means that the cost is close toO(|Ci |) whenα is close to zero, and approachesO(N) asα
approaches one; i.e., our algorithm drops in the worst case to that of [1].

0 1 2 3 4 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of records in the query result

P
ro

of
 s

iz
e

/ q
ue

ry
 r

es
ul

t s
iz

e

Proof overhead on join queries

Record size = 1 KB
Record size = 10 KB

Figure 19: Proof overhead.

Communication overhead. In our scheme, the proof size does
not depend on the record size. This is an important difference be-
tween ours and the join algorithms proposed by Yanget al. [1],
where the proof size increases with the record size. Figure19shows
the overhead of our proofs on the join query result with two record
sizes: 1 KB and 10 KB. Our proofs add only∼1% overhead when
record size is 10 KB, and∼6% overhead when record size is 1 KB.

Comparison to previous work. Join algorithms in [1, 20] al-
ways add two boundaryvalues or records for each comparison dur-
ing a join. Our algorithm adds two boundaryvalues only for non-
matching records in a comparison. Table1 shows some concretevo
sizes related to these schemes in a similar setting, for the key-based
join. The client and server computation times for the same key-based
join are given in Table2. As our scheme uses HADSs built on col-
umn values, the computation times are independent of the record

size, helping our scheme outperform those in [1].

Table 1: Proof size comparison for join.

Record size Yanget al. [1] Panget al. [20] Our scheme
64 B ∼32 MB

∼13 MB ∼2 MB
512 B ∼202 MB

19

Table 2: Client and server computation times for join.

Scheme
Client verification Server proof generation

Record size Record size
64 B 512 B 64 B 512 B

Yanget al. [1] 18s 128s 7 s 100s
Our scheme 3.6s 1.4s

8. Conclusion

In this paper, we presented a hierarchical ADS for storing the security information required for proof generation
in outsourced databases. The HADS extends the ADS to supportstoring duplicate values, and generating comparable
and combinable proofs efficiently (useful for boolean operators and joins). We employed the HADS to construct
outsourced databases with proofs for query result authenticity, including completeness, correctness, and freshness
guarantees. We formally proved these properties using our new unified security definition.

Our outsourced database construction can provably handle selection queries with one or multiple clauses, join
queries including equijoins, non-equijoins, band joins, joins on non-PK columns, joins over more than two tables, and
combinations of selection and join queries. Besides, with reduced use of boundary records, we can easily support
clauses formed using the SQL ‘IN’ operator. This allows us topresent efficient proofs for a wide range of database
queries. We leave concurrent proof generation as future work.

We have presented performance gains due to our solution overthe previous work where regular (one-level) ADSs
are used. Our solution achieves∼3x smaller proofs in size and∼5x faster proof generation when HADS is used for
queries with one clause. Moreover, for join queries we observed∼4x enhancement in proof size and∼5x enhancement
in proof generation time using HADS, when each foreign key isrepeated 100 times, on average. With reasonable
record sizes, e.g., 5-20 KB in our Koç University database’s Student table, the communication overhead is∼4%
compared to the result size, becoming even smaller with larger record sizes. These all confirm practicality of our
outsourced databases scheme.

Acknowledgement

This work is supported by T̈UBİTAK, the Scientific and Technological Research Council of Turkey, under project
numbers 112E115 and 114E487, and European Union COST Actions IC1206 and IC1306.

References

References

[1] Y. Yang, D. Papadias, S. Papadopoulos, P. Kalnis, Authenticated join processing in outsourced databases, in:
ACM SIGMOD International Conference on Management of data,2009, pp. 5–18.

[2] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, Dynamic authenticated index structures for outsourced
databases, in: ACM SIGMOD, 2006, pp. 121–132.

[3] J. Wang, X. Du, Skip list based authenticated data structure in das paradigm, in: GCC’09, 2009.

[4] M. T. Goodrich, R. Tamassia, N. Triandopoulos, Super-efficient verification of dynamic outsourced databases,
in: CT-RSA, Springer, 2008, pp. 407–424.

[5] G. Nuckolls, Verified query results from hybrid authentication trees, in: Data and Applications Security XIX,
Springer, 2005, pp. 84–98.

[6] Z. Liu, X. Chen, J. Yang, C. Jia, I. You, New order preserving encryption model for outsourced databases in
cloud environments, Journal of Network and Computer Applications 59 (2016) 198–207.

[7] H. Pang, A. Jain, K. Ramamritham, K.-L. Tan, Verifying completeness of relational query results in data pub-
lishing, in: ACM SIGMOD, ACM, 2005, pp. 407–418.

20

[8] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, Authenticated index structures for aggregation queries, ACM
Transactions on Information and System Security (TISSEC) 13 (4) (2010) 32.

[9] J. Celko, Joe Celko’s Trees and hierarchies in SQL for smarties, Morgan Kaufmann, Washington, 2004.

[10] P. Devanbu, M. Gertz, C. Martel, S. G. Stubblebine, Authentic third-party data publication, in: Data and Appli-
cation Security, Springer, 2002, pp. 101–112.

[11] H. Pang, K.-L. Tan, Authenticating query results in edge computing, in: International Conference on Data Engi-
neering, IEEE, 2004, pp. 560–571.

[12] M. Narasimha, G. Tsudik, Authentication of outsourceddatabases using signature aggregation and chaining, in:
Database Systems for Advanced Applications, Springer, 2006, pp. 420–436.

[13] E. Mykletun, M. Narasimha, G. Tsudik, Providing authentication and integrity in outsourced databases using
merkle hash trees, 2003.

[14] B. Palazzi, Outsourced storage services: Authentication and security visualization, Ph.D. thesis, Roma Tre Uni-
versity (2009).

[15] B. Palazzi, M. Pizzonia, S. Pucacco, Query racing: fastcompleteness certification of query results, in: Data and
Applications Security and Privacy XXIV, Springer, 2010, pp. 177–192.

[16] J. Wang, X. Chen, X. Huang, I. You, Y. Xiang, Verifiable auditing for outsourced database in cloud computing,
IEEE transactions on computers 64 (11) (2015) 3293–3303.

[17] X. Chen, J. Li, J. Weng, J. Ma, W. Lou, Verifiable computation over large database with incremental updates,
IEEE transactions on Computers 65 (10) (2016) 3184–3195.

[18] J. Xu, Z. Cao, Q. Xiao, F. Zhou, An improved authenticated skip list for relational query authentication, in:
Broadband and Wireless Computing, Communication and Applications (BWCCA), 2014 Ninth International
Conference on, IEEE, 2014, pp. 229–232.

[19] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, S. G. Stubblebine, A general model for authenticated
data structures, Algorithmica 39 (1) (2004) 21–41.

[20] H. Pang, J. Zhang, K. Mouratidis, Scalable verificationfor outsourced dynamic databases, VLDB 2 (1) (2009)
802–813.

[21] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of the ACM 13 (7)
(1970) 422–426.

[22] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, Integrity for join queries in the
cloud, IEEE Transactions on Cloud Computing 1 (2) (2013) 187–200.

[23] Y. Zhang, J. Katz, C. Papamanthou, Integridb: Verifiable sql for outsourced databases, in: ACM CCS’15, ACM,
2015, pp. 1480–1491.

[24] B. Parno, J. Howell, C. Gentry, M. Raykova, Pinocchio: Nearly practical verifiable computation, in: Security
and Privacy (SP), 2013 IEEE Symposium on, IEEE, 2013, pp. 238–252.

[25] M. Backes, M. Barbosa, D. Fiore, R. M. Reischuk, Adsnark: nearly practical and privacy-preserving proofs on
authenticated data, in: 2015 IEEE S & P, IEEE, 2015, pp. 271–286.

[26] A. Boldyreva, N. Chenette, Y. Lee, A. O’neill, et al., Order-preserving symmetric encryption., in: Eurocrypt,
Vol. 5479, Springer, 2009, pp. 224–241.

[27] A. Boldyreva, N. Chenette, A. O’Neill, Order-preserving encryption revisited: Improved security analysis and
alternative solutions., in: CRYPTO, Vol. 6841, Springer, 2011, pp. 578–595.

21

[28] T. Xiang, X. Li, F. Chen, S. Guo, Y. Yang, Processing secure, verifiable and efficient sql over outsourced database,
Information Sciences 348 (2016) 163–178.

[29] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, X.-W. Wang, Modeling a dynamic data replication strategy to increase
system availability in cloud computing environments, Journal of computer science and technology 27 (2) (2012)
256–272.

[30] M. Etemad, A. Küpçü, Transparent, distributed, andreplicated dynamic provable data possession, in: Interna-
tional Conference on Applied Cryptography and Network Security, Springer, 2013, pp. 1–18.

[31] E. Esiner, A. Küpçü,Ö. Özkasap, Analysis and optimization on flexdpdp: A practicalsolution for dynamic
provable data possession, in: Intelligent Cloud Computing(ICC’14), 2014.

[32] P. Devanbu, M. Gertz, C. Martel, S. Stubblebine, Authentic data publication over the internet, Journal of Com-
puter Security 11 (3) (2003) 291–314.

[33] R. Tamassia, Authenticated data structures, in: Algorithms-ESA 2003, Springer, 2003, pp. 2–5.

[34] C. Papamanthou, R. Tamassia, Time and space efficient algorithms for two-party authenticated data structures,
Springer, 2007, pp. 1–15.

[35] M. T. Goodrich, R. Tamassia, N. Triandopoulos, Efficient authenticated data structures for graph connectivity
and geometric search problems, Algorithmica 60 (3) (2011) 505–552.

[36] W. Pugh, Skip lists: a probabilistic alternative to balanced trees, Comm. of the ACM 33 (1990) 668–676.

[37] R. Merkle, A certified digital signature, in: CRYPTO’89, Springer, 1990, pp. 218–238.

[38] P. Mishra, M. H. Eich, Join processing in relational databases, ACM Computing Surveys (CSUR) 24 (1) (1992)
63–113.

[39] V. Raman, L. Qiao, W. Han, I. Narang, Y. Chen, K. Yang, F. Ling, Lazy, adaptive rid-list intersection, and its
application to index anding, in: ACM SIGMOD, Vol. 11-14, 2007, pp. 773–784.

[40] C. Galindo-Legaria, A. Rosenthal, Outerjoin simplification and reordering for query optimization, ACM Trans-
actions on Database Systems (TODS) 22 (1) (1997) 43–74.

[41] G. Graefe, Query evaluation techniques for large databases, ACM Computing Surveys 25 (2) (1993) 73–169.

[42] S. Meiklejohn, C. Erway, A. Küpçü, T. Hinkle, A. Lysyanskaya, Zkpdl: A language-based system for efficient
zero-knowledge proofs and electronic cash., in: USENIX Security Symposium, 2010.

[43] E. Mykletun, M. Narasimha, G. Tsudik, Authentication and integrity in outsourced databases, ACM Transactions
on Storage (TOS) 2 (2) (2006) 107–138.

[44] C. Papamanthou, R. Tamassia, N. Triandopolos, Authenticated hash tables, in: ACM CCS’08, 2008, pp. 437–
448.

[45] M. T. Goodrich, R. Tamassia, J. Hasić, An efficient dynamic and distributed cryptographic accumulator, in: Info.
Security, Springer, 2002, pp. 372–388.

[46] M. Naor, K. Nissim, Certificate revocation and certificate update, Selected Areas in Communications, IEEE
Journal on 18 (4) (2000) 561–570.

[47] D. J. DeWitt, J. F. Naughton, D. A. Schneider, An evaluation of non-equijoin algorithms, in: VLDB, Morgan
Kaufmann Publishers Inc., 1991, pp. 443–452.

[48] J. Benaloh, M. De Mare, One-way accumulators: A decentralized alternative to digital signatures, in: EURO-
CRYPT’93, Springer, 1994, pp. 274–285.

22

[49] M. Goodrich, R. Tamassia, Efficient authenticated dictionaries with skip lists and commutative hashing, US
Patent App 10 (416,015).

[50] C. Erway, A. Küpçü, C. Papamanthou, R. Tamassia, Dynamic provable data possession, in: CCS’09, ACM,
2009, pp. 213–222.

Appendix A. ADS Definitions

Definition 5. An ADS scheme consists of following three polynomial-time algorithms [34]:

KeyGen(1k)→ (sk, pk) is run by the client to generate a private and public key pair(sk, pk) given the security pa-
rameter k. She shares the public key pk with the server.

Certify(pk,cmd)→ (ans,π) is executed by the server to respond to a command issued by theclient. The public key
pk and the command cmd are given as input. If cmd is a query command, it outputs a verification proofπ that
enables the client to verify the authenticity of the answer ans. If cmd is a modification command, then the ans is
null, andπ is a consistency proof that enables the client to update her local metadata.

Verify(sk, pk,cmd,ans,π ,st)→ ({accept,reject},st′) is run by the client upon receipt of a response. The public
and private keys(pk,sk), the answer ans, the proofπ , and the client’s current metadata st are given as input.
It outputs anaccept or reject based on the result of the verification. Moreover, if cmd was amodification
command and the proof is accepted, the client updates her metadata accordingly (to st′).

Definition 6. Correctness of ADS. For all valid proofsπ and server answers ans in response to client commands, the
verify algorithm accepts with overwhelming probability.

Definition 7. The ADS security game is played between the challenger who acts as the client and the adversary who
plays the role of the server:

Key generation The challenger runs KeyGen(1k) to generate the private and public key pair(sk, pk), and sends the
public key pk to the adversary.

Setup The adversary specifies a command cmd, and sends it together with an answer ans and proofπ to the chal-
lenger. The challenger runs the algorithm Verify, and notifies the adversary about the result. If the command
was a modification command, and the proof is accepted, then the challenger applies the changes on her lo-
cal metadata accordingly. The adversary can repeat this interaction polynomially-many times. Call the latest
version of the HADS, constructed using all the commands whose proofs verified, D.

Challenge The adversary specifies a command cmd, an answer ans′, and a proofπ ′, and sends them all to the
challenger. He wins if the answer ans′ is different from the result set of running cmd on D, and cmd,ans′,π ′ are
verified as accepted by the challenger.

Definition 8. Security of ADS. We say that the ADS is secure if no PPT adversary can win the ADS security game
with non-negligible probability.

Fact 1 (Security of ADS). The ADS is secure according to Definition8.

This is proved for different schemes separately. Merkle [37] showed the security of Merkle hash tree, Papamanthou
et al. [44] did the job for the authenticated hash table, Goodrichet al. [45] proved security of the accumulator based
ADS, Noar and Nissim [46] showed security of the 2-3 tree, and Papamanthou and Tamassia [34] proved security of
the ADSs based on authenticated skip list or red black tree.

23

Appendix B. Additional Discussion

Appendix B.1. Modification

As an example targeting modification, consider adding a new record into theStudent table: INSERT INTO

Student VALUE(109,‘Cem’,‘CE’,‘Izmir’). This adds the pair (109,h(record)),whereh(record)=h(h(109)||
h(‘Cem’)||h(‘CE’)||h(‘Izmir’)), into the ADS of the PK column. We further need to add (109,h(record))
to the second-level ADS associated withCE. Once this is done, since the digest of theCE ADS would be modified,
we need to reflect this in theMajor ADS as well. Similarly, we need to construct a newIzmir ADS, contain-
ing only (109,h(record)), and add its digest to theBCity ADS. Therefore, using two-level HADS constructions,
there will be three parts in the translated command: (109,h(record)) to be executed by the ADS of the PK column,
(CE,(109,h(record))) for theMajorHADS, and (Izmir,(109,h(record))) for theBCityHADS. In a four-level
HADS construction, the translated command looks like: (Student,{〈StdId,(109,h(record))〉,〈Major,(CE,
(109,h(record)))〉,〈BCity,(Izmir,(109,h(record)))〉}).

Appendix B.2. Tables with Composite Keys

Some tables may employ composite keys that makes the construction problematic: We cannot relate a non-PK
column to any subset of the PK columns due to the existence of duplicate values. Previous schemes [1, 15] cannot
handle this case efficiently, as they need to construct and use multiple ADSs for each column.

Figure B.20: Storing the columnMark from tableS2C with
composite PK (StdId andCrsId).

HADS solves this problem efficiently. The con-
catenation of multiple foreign keys forms a composite
key, generally. We use this composite key as the PK
of the table, and use it to construct the HADSs. One
HADS is constructed for each searchable column (in-
cludingforeign key columns), relating the column’s val-
ues (containing duplicates) stored at the first-level ADS
(remember that the ADS contains only one copy of each
replicated value) to the unique PK values (constructed
as the composite key) stored at the second-level ADSs.
These HADSs can be used in connection with other
HADSs to generate the proofs. An example is depicted
in FigureB.20where the composite key for tableS2C is

StdId||CrsId. Since neitherStdId norCrsId is a PK in tableS2C, they both have their respective two-level HADSs,
where, for example, uniqueStdId values are stored at the first level ADS, and for each uniqueStdId, all associated
composite keysStdId||CrsId are stored at the second level ADS (a similar HADS is built forCrsId).

Appendix B.3. Special Joins

Equijoin is defined to be the join in which the operator is equality [38, 47]. Thenon-equijoin, which is also called
theband join, is defined as the join operation that the operator is not equality [38]; i.e., the values of one of the join
columns fall within abandof values of the other column [47].

Equijoin of the form T1.Ci = T2.Cj ∓n,n ∈ N. This is a special case of the equijoin. We treatT1.Ci = T2.Cj ∓n
as matching (instead ofT1.Ci = T2.Cj) and apply the equijoin algorithm. Proof generation for thequeryT1.a+1=
T2.a = T3.a− 2 on Figure11 works as follows: The algorithm starts with the smallest values 1, 1, 5, respectively.
Since the relationT1.a+1= T2.a= T3.a−2 does not hold, the greatest number according to the relation, which is 5,
is used to find the expected node on the two other ADSs. But since we are not looking for 5 in the other tables, we need
to adjust our parameter. 5 would be matched with 5-2=3 inT2, so we runFindNext(3) onT2. It will also be matched
with 5-2-1=2 inT1, so we runFindNext(2) onT1. Using our join proof generation algorithm this way generatesvo=
‘h(−∞),h(1),2;h2,3;h(−∞),5 : 4;5;7 : 6,9;9;9,17 : 15;14,19;17 : h(16),18;19;19,h(+∞) : h5,h(+∞);h(20),h4,h(+∞);’.
This shows that there are two matchings, (2, 3, 5) and (4, 5, 7), for the queryT1.a+1= T2.a= T3.a−2 on Figure11.

Non-equijoin. The general form of a non-equijoin query is|T1.Ci−T2.Cj |< n,n∈ N. A simple proof generation
algorithm for this join is to select the HADS of the table withsmaller number of records, and for each node of this
HADS, perform an authenticated range query on the other HADS. But, this is less efficient regarding computation and
communication, due to the many intersections among the setsthe authenticated range queries return.

24

We modify our join algorithm slightly to support the non-equijoin more efficiently, where each HADS is traversed
only once. We select the smaller HADS, and for each record in this HADS, compute the matching records on the other
HADS. Since one record may correspond to many records, we need to include the boundary records (remember we
are using multi-proof ADSs). To prevent the values to be processed multiple times, we perform as follows:

• If the left boundary of the current record is greater than theright boundary of the previous record, then it is
necessary, and hence we add the required intermediate information, the left boundary, the matching records, and
the right boundary into thevo.

• If the left boundary of the current record is less than or equal to the right boundary of the previous record, there
may be common matching records. Due to the security of HADS that prevents a malicious server from adding
or deleting matching records, there is no need to go backward. Thus, we go on from the current position in the
second HADS, and add into thevo the remaining matching records until the right boundary record.

Therefore, in both cases, the server traverses both HADSs once. The same facts hold for the client during the
verification. She only checks the given boundary records andreconstructs the HADS without the need to go back-
ward. This is an important observation that simplifies the client and server computation. Two helper functions
FindLeftBoundary() andFindRightBoundary() with obvious functionality are used during the algorithm.

Figure B.21: Non-equijoin proof genera- tion
scenario for|T1.a−T2.a|< 3.

Assume that we want to execute the non-equijoin query|T1.a−T2.a|<
3 on the example given in FigureB.21. We start byT1 (who has fewer
records) and for each record, find the set of matching recordson T2. For
the first record, 5,FindLeftBoundary(5) andFindRightBoundary(5)
return the boundary records 1 (|5− 1| >= 3) and 9 (|5− 9| >= 3), re-
spectively. These boundary records together with the matching records
in between, are added into thevo: vo=‘5;1,3,5,9’. The next record is 7
for which |7− 9| < 3, hence, its left boundary record is already in the
proof, and we only need to find the right boundary record whichis 14.
Since all matching records are already in thevo, we add only 14, i.e.,
vo=‘5;1,3,5,9 : 7;14’. Nothing is inserted for the next record, 9, since
|9−14|>= 3, meaning that even the right boundary is already in the proof,
leading tovo=‘5;1,31,5,9 : 7;14 : 9;-’. Regarding 24, since|24−14|> 3,
we callFindLeftBoundary(24) to find the left boundary record, which
addsh(19) as the intermediate information into thevo, and returns 20.

FindLeftBoundary(24) returns 28. There are no matching records in between, therefore, only the boundary records
are added into thevo=‘5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28’. Since the end ofT1 is reached, we addh(30) as the
intermediate data ofT2. Finally, the proofvo=‘5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28 : h(+∞);h(30),h(+∞)’ is returned.

Appendix C. Efficient ODB Construction

Different ADSs can be chosen for HADS levels subject to theirrequirements and the application. We employ
two-level HADSs, with special role and considerations for each level, compare the existing ADSs and investigate
their eligibility to be used in each level. We consider threeclasses of ADSs:linear (e.g., one-way accumulator [48]),
sublinear(e.g., authenticated hash tables [44]), andlogarithmic(e.g., authenticated skip list [49, 50]).

First level. This level stores the distinct values of a column, and generates the first part of the proof to be sent
to the client. Proof generation is based on the authenticated range queries, which implies that this level should use
anordered ADS. One-way accumulator and hash tables do not support thisproperty efficiently, and hence cannot be
used for this level. Therefore, we choose the authenticatedskip list (alternatively, the Merkle hash tree) to be used in
the first level. The proof time/space isO(log(|Ci |)) for an update, andO(log(|Ci |)+ t) for a query withO(t) records in
the result set. There are|Ci | distinct values, on average, stored in the first-level ADS, therefore, the storage complexity
is 2|Ci |, which isO(|Ci |).

Second level. This level stores the PK-sets of values in the first level. For one-dimensional queries, and multi-
dimensional queries connected with ‘OR’, the order of values in the PK-set is not a matter of importance, thus, any

25

Table C.3: A comparison of second-level ADSs for storing a single table. Proof size and verification time are given for
one-dimensional queries.sdenotes the number of searchable columns, andt shows the number of records in the first level.

Accumulator Authenticated hash table
Storage 2N+(s−1)(2|Ci |+2N) 2N+(s−1)(2|Ci |+N)

Proof size 2log|Ci |+ t +2tN/|Ci | 2log|Ci |+ t +2t ∗N/|Ci |

Verification time t(log|Ci |+N/|Ci |) t(log|Ci |+N/|Ci |)

Update time logN+(s−1)(log|Ci |+N/|Ci |) logN+(s−1)(log|Ci |+N/|Ci |)

Authenticated skip list
Storage 2N+(s−1)(2|Ci |+2N)

Proof size 2log|Ci |+ t + tN/|Ci |

Verification time t(log|Ci |+2N/|Ci |)

Update time logN+(s−1)(log|Ci |+ logN/|Ci |) = slogN

ADS can be used with time/space trade-offs discussed below.The second-level ADSs of multi-dimensional queries
connected with ‘AND’ should be compared to generate efficient proofs, hence, anorderedADS should be employed.

Accumulator. For each distinct value in a column, an accumulated value iscomputed using all values in its PK-
set. For each PK value, a witness is computed which proves that it belongs to the specified PK-set. If we need to select
all PK values, the second-level proof is essentially empty,but to select a subset of the PK values (mostly required for
‘AND’), the witnesses of the selected PK values are requiredto be sent to the client.

For each distinct value in the first-level ADS,N/|Ci | PK values and witnesses should be computed and stored,
on average, whereN is the total number of records in the table. In total, 2|Ci|+ |Ci| ∗N/|Ci| = 2|Ci |+N (which is
O(|Ci |+N)) storage is required (including the 2|Ci | space for the first-level ADS). A proof for each value is made
up of two parts, one for the first-level ADS (e.g., for authenticated skip list, a path from the leaf up to the root,
which isO(log|Ci |)), and the other is the accumulated value along with all values in the PK-set, which isN/|Ci | (the
accumulated value is already included in the hash value stored at the corresponding leaf of the first-level ADS). The
client herself can check validity of the PK-set against the accumulated value. Therefore, for a result set of sizet, the
asymptotic size ofvowill be O(log|Ci |)+2t ≃O(log|Ci |+ t).

The main problem with the accumulator is the cost of update: with each update, all witnesses should be updated
using costly operations (e.g., modular exponentiation).

Authenticated hash table. This is a sublinear membership scheme with constant query and verification time,
making it an interesting scheme for clients with resource-constrained devices. It is a good choice if the data is static.
For a leaf node storingvi , we put the PK-set ofvi in an authenticated hash table, and store its digest at the level
above. On average,N/|Ci | PK values linked to each leaf node; therefore, we requireO(|Ci |+(1+ ε)N/|Ci | ∗ |Ci |) =
O(|Ci |+(1+ ε)N)) ≈ O(|Ci |+N) storage in total (including theO(|Ci |) space for the first-level ADS). Here,ε is a
constant. The first-level ADS proof is the same, and the constant proof sizeε of the authenticated hash table [34]
makes the proof(O(log|Ci |)+ t) for t records in the result set. Hash operations are also much faster than modular
exponentiations of the accumulator.

Merkle tree or authenticated 2-3 tree or authenticated skiplist. These are logarithmic membership schemes
with logarithmic height and proof size. The way the second-level schemes are modified, or the proofs are generated,
are the same as for the first-level.

Each node requires≈ 2(N/|Ci |) storage to store the PK-set, therefore, 2|Ci|+ 2|Ci | ∗N/|Ci | = 2(|Ci |+N) =
O(|Ci |+ N) storage is required to store a column. The proof size and timefor one record are bothO(log|Ci |+
log(N/|Ci |)) = O(logN), and forr = tN/|Ci | records are bothO(log|Ci |+ r).

A comparison of ODB construction via various ADS schemes is given in TableC.3, where the first level is a
logarithmic ordered ADS and the second levels are shown in the table. Note, however, that the unit operations in the
accumulator are more costly than those in the others. It shows that using a logarithmic ADS such as an authenticated
skip list at both levels is the efficient choice leading toO(log|Ci |+ r) proof size and time forr = tN/|Ci | records, and
O(logN) update time for one record. Other alternatives can be chosenregarding the requirements of applications, such
as the database being static or dynamic.

26

