Published version available at Elsevier: https://doi.org/10.1016/j.jnca.2018.04.006

Verifiable Database Outsourcing Supporting Join

Mohammad Etemdil Alptekin Kipci#

aKog University,istanbul, Turkey

Abstract

In an outsourced database scheme, the data owner deldgatisa management tasks to a remote service provider
who is supposed to answer owner’s queries on the databasessbntial requirements are ensuring the data integrity
and authenticity with efficient mechanisms. Current apphea employ authenticated data structures to store sgcurit
information, generated by the client and used by the seteecompute proofs that show the query answers are
authentic. The existing solutions have shortcomings witlitirclause queries and duplicate values in a column.

We propose a hierarchical authenticated data structurgtdoing security information, which alleviates the men-
tioned problems. Our solution handles many different typequeries, includingnulti-clause selectiomnd join
queries, in alynamicdatabase. We provide a unified formal definition of a secutecaumced database scheme, and
prove that our proposed scheme is secure according to thistide, which captures previously separate properties:
correctnesscompletenessandfreshness The performance evaluation based on our prototype impigatien con-
firms the efficiency of our proposed scheme, showit8x smaller proofs ané-5x improvement in proof generation
time compared to previous works (Devarddial. 2002, Pangt al. 2005, Liet al.2010, Palazzét al. 2010).

Keywords: Outsourced databases, Hierarchical authenticated datilses

1. Introduction

Popularity and pervasiveness of computer systems and rnetmave led to production of huge amount of data
in organizations and companies. Data needs protectionmnast companies lack enough resources to provide it. By
outsourcing data storage and management, they free thesagedm data protection difficulties, and concentrate on
their own proficiency. Consider a university who stores dddaut all students, faculty, and courses in a relational
database, with limited resources and equipment for hostilegge amount of data and handling a large volume of
gueries, especially at the beginning and end of each sem&ktuniversity wishes to outsource data management to
a remote database service provider who offers mechanisatx&ss and update the database online.

The main concern is that the owner loses the direct contrl ber data and should rely on answers coming from
the service provider (who isot fully trusted). This necessitates mechanisms giving tita devner (the client) the
ability for checking authenticity of the answers to her dgegr For this, the answer of a client query (tilesult se} is
accompanied with gerification objec{vo). Since the client may be a portable device with limited pssing power,
thevo should be small and efficiently verifiable. It is used to wevithether the query answer i§,[2, 3, 4, 5, 6]:

e complete: the result set sent to the client is exactly the set of rectrdt are the output of executing the query,

i.e., norecord is added or removed.

e correct (sound): the result set originates from the data owner, i.e., no thmaized modification on records.

o fresh: the result set sent to the client is provided using the mexstmt data on the server, and does not belong
to old versions, i.e., no replay attacks.
A small part of our sample database together with the resuhe query SELECT * FROM Student WHERE
stdID > 105" is shown in Figurel. We want the completeness, correctness, and freshnessriespall holding in
the answer, guaranteeing its authenticity. Recall thatragyy key (PK) column in a table (e.g+dID in Figureld)
contains unique values, while non-PK columns (&4gjor andBCity in Figurela may contain duplicate values.

Email addresseshetemad@ku.edu.tr (Mohammad Etemadjkupcu@ku.edu.tr (Alptekin Kupgi)

Student S2¢ Course

StdID | StdName | Major | BCity StdID | CrsID | Mark | | CrsID CrsName Credit | CrsType

101 Ali CE | Istanbul 101 501 A 500 Soft. Eng. 3 A

102 Emir CE | Istanbul 101 502 B 501 Prog. Lang. 3 A

103 Hande CS | Istanbul 101 504 C 502 DB Design 3 A

104 Ates EE | Istanbul 103 503 B 503 Alg. Design 3 E n n

105 | John | CS | Ankara || 103 | 504 | C 504 | DB Lab. I X StdID | StdName | Major | BCity

106 | Tommy | CE | Ankara 106 [500 B 505 OS Lab. 1 X 106 Tommy CE Ankara

107 Katty EE Tebriz 106 502 A 107 Katty EE Tebriz

108 Matt EE Tebriz 106 504 B B
o5 T 301 c 108 Matt EE Tebriz
108 503 A

(b) The result set of QUerSELECT * FROM
(a) Our sample database. Student WHERE StdID>105.
Figure 1: (a) Our sample database and (b) the result of a queity

The client issues queries with clauses on seeerchablecolumns, and checks authenticity of the answers. The
general method is to sort a table by each searchable coluthbuld an authenticated data structure (ADS) on it.
Each ADS is later used to generate cryptographic proofsuerigs having a clause on the corresponding column.

There is a problem with duplicate values in non-PK sear@ablumns 7, 8]: a total order on the values of
searchable columns is required to build the ADSs, whiclettogy with the fact that duplicate values belong to différen
records, make building the ADSs complicated. As clarifigdrlan Sectionl.2, the existing solutions are nefficient
We introduce aierarchical ADSscheme (HADS) for this problem that is also advantageousanfeneration for
multi-clause and multi-table (join) queries. The HADS candbored in the same databaSgdr separately. It does
not need to be tied to a specific database and can be changedtraffecting the proof system.

The rationale behind our work is to relate everything to tKe.PAs the unique identifiers of records in a database,
the PKs enable us to compare and combine the results ofefitfqueries and check the correctness and completeness
at the same time (freshness is provided by storing a consizaimetadata locally at the client). This is an important
distinction between our HADS and similar (multi-level) ABSas their proofs cannot be combined and compared
together, rendering them inefficient for multi-clause andltirtable queries. We also support dynamic databases
where the data owner issues modification queriess¢rt,Delete,Update), in a provable manner. Overall, we
believe our HADS may also be of independent interest, apbplécto other scenarios.

Our contributions are summarized as follows:

e We give aunified security definition for an outsourced database scheme (ODB) coverimgpletenessor-
rectnessandfreshnessimultaneously.

e We formalize thehierarchical ADS scheme and prove its security based on the security of theriyimtty ADSs.

e We build a provably-secure ODB using HADS that supportsiefficoroof generation for not only single-clause
but alsomulti-clause queries.

e Our scheme supports tables witbmposite keysas well, for the first time.

e Our ODB construction efficiently handles proofs jom queries, multi-table joins, non-equijoins, and queries
containingboth join and selectian

e We handle proofs on columns containing duplicate valuesnafficiently. While being generated abdx
faster, our proofs are abo8x smaller in size, compared to the previous works.

e Our ODB provides efficient proofs for almost all query typedle achieved% communication overhead
compared to the actual result size, using our Ko¢ Univedstabase.

1.1. Related Work

ADS-based ApproachesAuthenticated data structures are used to store authéntiagnformation, which is later
used to generate authenticity proofs for the query results.

Devanbuet al. [10] proposed one of the first schemes using ADS for checkingyritteof the outsourced data.
Using a Merkle hash tree to store the security informatibe scheme supports the projection and simple join opera-
tions on static data. Pang and Tdrd]used one or moreerifiableB-trees (VB-tree) for each table that is an extension
of B-tree using the Merkle hash tree. A VB-tree is generade@éch searchable column after sorting the table on that
column. This method does not support completenéssahd found insecure for the insecurity of the function used

to compute the signature$d]. A variant of this method, named MB-tree, is also used inliteeature [L, 5, 10, 13].
MB-tree is similar to VB-tree except that a light hash fuoatis used instead of expensive signatures.

Another line of work is using an authenticated skip list torstthe required information for verificatio,[14].
It is suitable and efficient enough for this purpose, espigaiegarding dynamic scenarios. Wang and Bugroved
that such ADSs provide completeness and soundness forioremsional range queries, and multi-dimensional range
gueries require multiple ADSs. Palazzi] 15] built one authenticated skip list for each searchableroalin each
table. For multi-clause queries, the result of one clauatistfinished earlier is returned. This is not efficient siace
larger set than the query result is transferred. The proidehat the results of these clauses cannot be compared and
combined together. Wanef al. [16] used a tuple-based hash tree to support correctness arglateness for static
outsourced databases. Chetral.[17] formalized the notion of verifiable databases with incramaéupdates for the
cases that a large number of small modifications occuretil.[18] defined themproved authenticated skip liahd
used it to propose a query authentication mechanism fooatted databases.

Authenticated range queryis a method for supporting the completeness, i.e., theneaestra or missing records
in the answerl, 2, 10, 12]. The server finds theontiguoushodes storing the result set of the query, as well as the left
and rightboundary recordémmediately surrounding the result set. (The underlyingAieds to berdered) It then
computes the ADS proofs of the boundary records and senmtgstier with the result set to the client for verification.
If the proof is accepted, the sfleft boundary record, result set, right boundary recpid guaranteed by therdered
ADS to be a sorted and contiguous set of values, with no extnaigsing values3, 19.

Hierarchical ADSs. Nuckolls [5] proposed a flexible structure called Hybrid Authenticatitree, which uses
the one-way accumulators in upper levels to break the degrexedon tree height of the MB-tree. Goodréttal. [4]
gave a verification method by dividing a tree witteaves into sub-trees with lodeaves. The sub-trees are divided
further into sub-trees witlD(loglogn) leaves. This process is repeated recursively up to an oldgre. None of the
previous work formalizes or generalizes such hierarchicsbs.

Provable join. Li et al. [2] proposed the Embedded Merkle B-tree to support autheaiticqueries. To join
two tablesk ands, R xg—c; S, whereGC; € R andCj € S, they find the smaller table, s&y and insert it as a whole
into thevo along with its proof. For eacty € C;, they construct a range query proof (using the other tablejnie
query 'SELECT * FROM S WHERE C; =V, and append it to theo. It requiresC;|-many range queries, hence, is not
efficient regarding the client and server computation, ardraunication.

Panget al. [20] used signature aggregation to propose a scalable quarlf eeghentication mechanism for dy-
namic databases. Their first attempt is similar2h ith a huge verification object. Their second attempt uses
certified Bloom filter R1] to show that some records has no matching records on thetatile.

Join algorithms that use the ADSs for both tables and gemesasonable proofs are proposed by Yanhgl.[1].

The Authenticated Indexed Sort-Mergean efficient form of previous join algorithms with one ADZ R0]. The
Authenticated Indexed Mergmproves the previous one using two ADSs, one for each tdbteaverses each ADS
once, and each required node is inserted only once inteath<hough it is efficient regarding both computation and
communication, for every (mis)match, two boundary recamdsinserted into theothat is unnecessary.

An integrity-checking mechanism for join queries perfodiry anuntrustedcomputational server working to-
gether with somérustedstorage servers is given i@7]. The client gives the storage servers a query and infoomati
on how to inject some fake records into the result. The stosmgvers execute the query, inject the fake records,
encrypt and send the result to the computational server whonms the join and sends the final result to the client.

Verifiable computation supports a general set of functionalities over the outsldata. IntegriDB23] supports
SQL queries such as max, min, count, sum, and avg on an ou&sbdatabase. Pinocchi@4 enables verifying
general computations outsourced to the cloud. ADSNARH proves the results of computations over authenticated
data to the third parties in a privacy-preserving mannees€hworks also can be utilized in database settings.

Encrypted databasesstore the data in encrypted format. However, range queeigsire order-preserving en-
cryption (OPE) 6, 26, 27] to find all matching records. Xiangt al.[28] proposed a cloud database model where the
computation service providers undertake most of the pastgssing and reconstruction burden for database query.
Then, they employed secret sharing and tree-based OPEd@giatabase outsourcing scheme. éfiwal. [6] used
programmable OPE for outsourced databases. They discties@iphertext-only attacks and statistical attacks for
such schemes, and how to mitigate them.

1.2. Overview of Our Solution

Data owner Model. The outsourced database (ODB) model, as depicted in Figure
D 2, is composed of three parties: ttiata ownerthequerier, and theservice
s ﬁw atabase upload
/ALY

provider. The data owner prepares and uploads the database, and gives

Modification Y . N ' o

. the querier(s) the security information for verification.e thay perform
- i -~) Proof modifications {nsert,delete,update) on the outsourced database.
nto require:

The service provider (thgerve) has the required equipment (software,
hardware, and network resources) for storing and maimtgithie database.

for verification

DBAS
We do not assume anything about the internal structure aféheer, i.e., it

Query
/QE 4 answer + Proof S may use replication and distribution to increase the peréorce and avail-
Querler iCilent erver —ability (e.g., P9, 30)).
. The querier (the usel) issues a query to the server, who executes the
Figure 2: The ODB model. query, computes the result set, generates the proof, and aéiback to the
querier. The querier then verifies the answer using the ggdoformation given by the data owner. For the sake of a
simpler presentation, we refer to them together aglieat We focus on the single-client case.

We decouple the security information from the real data goliti the server into two parts: the DBMS (database
management system) who stores the client data and respotigsdlient queries, and the DBAS (database authenti-
cation system) who stores the security information as af#&b&s and HADSs, and generates proofs for the queries.
The server relays the received queries to both the DBMS andiS)Bollects and forwards their responses to the
client. They can reside both on the same machine, or on éiffanachines. It is also possible to store the DBAS
inside a DBMS, employing techniques fro) P, 14]. Then, both parts can share the same DBMS or employ separate
DBMSs. The DBAS works independently of the underlying DBNSd any available DBMS can be employed. The
focus of this work is to construct an efficient and secure DBR& DBMS and DBAS together constitute an ODB.

Adversarial model. We assume a malicious adversary who may cheat by attadkéngtegrity of the outsourced
data (doing unauthorized modifications) and giving fak@oases to the client queries (running the query processing
algorithm incorrectly, or modifying the results), whilgiing to be undetected.

ADS-based solution We build ahierarchical ADS (HADS) for each searchable column of each table to be able
to generate proofs for different queries. Figdtevisualizes the idea for a database. The topmost ADSJata@base
ADS stores the table names. For each table, we hagbla ADS which stores names of the columns in that table.
For each column, we havecalumn ADShat stores theniquevalues in that column. Finally, the bottom-most ADSs
areprimary key ADSsassociated with eaamiquevaluev; in a columnC;, storing the primary key (PK) values of the
records having; in columnC;. For example, in our sample database in Figiae column-level ADS foMa jor will
contain only three leaves, with labelg, CS, EE. The lower-level ADS connected to tie& will contain the primary
key values 101, 102, and 106. Similarly, the lower-level A&¥finected t&sS will contain 103 and 105. Note that,
our HADS definition is flexible (both in terms of the number e¥éls, and the types of underlying ADSs used), and
hence such a four-level hierarchy is not a requirement, lsataple deployment that makes sense.

Efficient duplicate handling. Columns, such a%ajor, contain duplicate values. Obviously, such duplicates can
be made unique, for example, by appending a random perioint{&}, hash of the recordlf], or the replica number
[7]. Yet, the server should traverse the whole resulting (BIDB to search for a value. Since the HADS stores the
unigue values in an upper level, which is a much smaller AB& server first finds a value in this ADS, and accesses
the whole related values in the lower level, without furtb@emputation. As an example, consider a column containing
1000 unique values, each of which is repeated 100 times. Wae¢single-level) ADS would need to integrate 100,000
values, whereas our HADS will have one upper-level ADS witli@ values, and 1000 lower-level ADSs with 100
values each. Hence, instead of searching for 100 valuesAb&with 100,000 valuesthe server looks foonly one
value in an ADS withonly 1000 valuegand access the whole lower-level ADS storing 100 valuebowit further
computation). This results in great performance improveseegarding both communication and computation.

We use multi-proof supporting ADSs (e.g., the FlexLi3f]) to construct the HADSs, which in turn, makes
efficient authenticated range queries possible. A mutibpsupporting ADS generates an efficient (hon-)membership
proof for a set of values, instead of separate proofs for galtte. The proof for the range query claase col, < b,
indeed, only consists of membership proofa@hdb, and the values matching the clause.

Join. Another advantage of the HADS is amproved join algorithm Since we use ordered HADSSs, the items

|:| Normal ADS nodes

Nodes contained in the
query result

E The boundary nodes

7 Nodes required for re-
A constructing the proof

h5
h2 h3
r) o fces] oo e o] o]

(a) ADS ofStudent table’s PK column. (b) A membership proof.

Figure 3: (a) An ADS storing the PK column of tBeudent table, and (b) the membership proof for the QUEELECT StdID
FROM Student WHERE StdID > 105.

contained in them are comparable, and hence proving mutralrarships (i.e., for AND’ connector and join queries)
is easy. To join two tables on two columns, we start at thele$t leaf nodes of both ADSs and compare them together.
If they store the same value, it is reflected in the proof. @tfee, we jump over the nodes containing the smaller
value, to a node containing the smallest value less thanual égjthe bigger value. This process goes on until the end
of either ADS is met. The proof size and proof generation tismeduced due to the lack of duplicates in HADSs.
Comparing proofs. Since the HADS ties all values to their respective PKs, afssbows the authenticity of a
set of PKs to the client. Hence, it is possible to compare diselts of two or more proofs after verification, which
was a common problem among most of the existing solution%Z, 15, 32]. Stated differently, for selection queries
containing more than one clause, the server generates adsd lsack one proof per clause, but only the actual result
set. Then, the client verifies each proof separately to coenine authenticated PK-sets and performs set operations
among them. The result of this steps is another authenti€d{eset that can be compared against the result of the next
proof. The same happens for join queries with more than anesek, with a proper ordering detailed in Secboh
until all clauses are processed. The client verificatioroisedas in selection querie¥hus, more than two clauses
or joins on more than two tables can be handled efficiently, whout increasing the result set size.

2. Preliminaries
Notationsused throughout the paper are as follows:

Abbreviation Description Abbreviation Description

N Number of records in a table| |G| Number ofdistinctvalues in a columi;

VO Verification object ODB Outsourced database

PPT Probabilistic polynomial timg (H)ADS (Hierarchical) authenticated data structure
pk Public key PK Primary key (in a database table)

DBMS Database management syst¢nDBAS database authentication system

Afunctionv(k) : Z+ — [0,1] is callednegligibleif ¥ polynomials p3 constant k sit. V k > ko, v(k) < [1/p(K)].

Hash functions take arbitrary-length strings, and output strings of somedfilength. Leth: X«M — C be a
family of hash functions, whose members are identifieklayX. A hash function family is collision resistant if
vV PPT adversariedl, 3 a negligible functionv() st. Prlk«3%; (x, X')<—A(h,k) : (X' # x) A (hk(X) = he(X))] < v(K).

Authenticated data structure (ADS) is a scheme for data authentication, where untrusted respsmnswer
client queries and provide cryptographic proofs that thenaans are valid33, 34, 35]. The client constructs the ADS
and uploads it to a server. On receipt of a query, the serveisseack a proof, using which the client can verify the
answer. There are different types of ADSs: accumulatotfieaticated skip lists, authenticated hash tables, Merkle
hash trees, 2-3 trees. We provide a formal definitioAppendix Aand a performance comparisorppendix C

Authenticated skip list is an extension of the skip lisBf]. The leaves store hashes of data items, and the internal
nodes store hash of a function of values of their childretu&fon the path from a leaf node up to the root constitute
a membership proof. Figui@apresents an authenticated skip list storing the PK columhe$tudent table, and
Figure3b shows the membership proof for the QUEBLECT StdID FROM Student WHERE StdID>105.

Merkle hash tree[37] is another widely used ADS fataticdata. Both ADSs havinear space complexity, and
logarithmicproof size and verification time, in the number of the itenosest 35].

Ordered ADS shows some elements are consecutive (essential for raegiesju A total order on the elements to
be stored in an ordered ADS is required. Assugyeandz areconsecutivelements of #otal order (A, <) asx<y < z,
andA is stored aADS,. Informally, we sayADS, is orderedif it can prove that = pred(y) andz = sucdy) for all

Database
ADS

Table

ADSs Column
names

Column

ADSs Column
values

Primary key

ADSs Primary
keys

(a) A two-level HADS. (b) A general four-level HADS for a database.

Figure 4: HADS constructions with different levels to steseurity information for a database.

consecutives,y,z € A. The Merkle hash tree and authenticated skip list are odd&ESs, while the accumulator is
not. An ordered ADS perfectly suits authenticated rangeigse

Multi-proof ADS proves (non-)membership of multiple items in one proof.oésinot need to do the job for each
item one-by-one, and instead, it generates a proof showimig-Jmembership of all items in only one traversal of the
ADS. This reduces the server computation, the communitadiod the client verification, though not asymptotically.
These ADSs suit the authenticated range queries well. Befd1] is an ADS with multi-proof capabilities.

3. Hierarchical Authenticated Data Structures

The Hierarchical ADS (HADS) is an ADS consisting of multifdeels of ADSs. Each ADS at leveis constructed
on top of a number of ADSs at level- 1. Each element of an ADS stores the digest of an ADS at a losvet.|
Therefore, multiple ADSs with different underlying struggs can be linked together to form an HADS with multiple
levels. The data stored at the bottom-most level are linkete digest of the topmost ADS through the (data stored
at) the internal ADSs. The client stores the digest of theniogt ADS as metadata through which she can verify
authenticity of all data stored in the HADS. Figutapresents a two-level HADS instantiation (based on Figire
using authenticated skip list a the first level and Merklehhase at the second level. The node storing a value, e.g.,
Cs, ties the value to the digest of its respective second-k&, while being tied to the digest of its own ADS. Figure
4b shows a general four-level HADS architecture to store aldes@ (the ADSs are represented as tree for simplicity,
but they can be of any type as long as they can store digest ebtfnresponding lower level ADSS).

An HADS schemeis an ADS scheme defined with three PPT algorithiikeyGen ,HCertify,HVerify) to
distinguish them from non-hierarchical ADSs. DefinitiongNppendix A(using HADS algorithm names) provide a
formal framework for HADS schemes.

3.1. HADS Construction

We construct an HADS using (possibly different) ADSs at rpldt levels in a hierarchical structure. First, all
lowest-level ADSs are constructed using the data. ThesetA®Ss are grouped according to some relation, and their
digests together with information about their location #meldata of the upper level are used to build the upper-level
ADSs. This process is followed until a single ADS is built veeaoot is stored as metadata by the client.

To generate a membership proof, the client should providesénver with the required information directing the
traversal on the HADS at all levels. The server follows doh@ HADS until the last level, generates and combines
the proofs for all levels, and sends the resultant proofécctient. If ADSs with modification capabilities are used, a
similar recursive strategy is employed for provable modifan (insertion, deletion, and update) as well.

We provide the input as a set (Keyvalue) pairs in such a way that the pairs needed for the upper lepglsaa
first. The process will begin on the topmost ADS, and be daedty input data customized to proper sub-ADSs at
each level. A query command needs only the keys, while a neadiifin potentially requires both the keys and values.

3.2. HADS Operations

The HKeyGen algorithm generates public and private key pairs for eaeél lend combines all public keys into
pkqapsand all private keys intskyaps (Figureb).

1: skjaps= PkHaps={}; > Private and public key of the HADS.
2: fori=1tondo > nis the number of levels of the AD$.
3: (sk pk) = ADS.KeyGen(lk); > Ask leveli ADS to produce its security keys.
4. skyjaps=skiapsUsk
5. pkyaps= PkiaDsU Pk
6: Return(skyaps PkHADS)-

Figure 5:HKeyGen, run by the client.
1: Pown= Pehiia = {}; > Proof of the current ADS and the combined proof of all chiidre
2: {(ADS, {(key, valué)})} = Find(key, value) > Output is null at leaves.
3: for each element e {(ADS/, (key, valué))} do
4 P = eADS.HCertify(pk cmd e (key,valug)); > Ask each child compute proof.
5: Penitd = Penila]|P; > Combine the proofs|
6: Pown= Certify(pk OPR (keyvalue); > Compute this ADS’s proof (not hierarchical).
7: ReturnPepig || Pown; > The proof.

Figure 6:HCertify, run by the server.

HCertify performs the modification and proof generation on the HAD@&rtBg at the topmost ADS, it is re-
peated on all affected ADSs in the hierarchy. Each ADS géeeritgs own proofindependendf other ADSs in
the same or other levels. Proofs of these ADSs are combirgsdher according to their order in the hierarchy, as
presented in Figuré. For simplicity, we use another algorithm to find the sub-A%a given ADS:

Find(keyvalue —({(ADS,{(key,valu€)})}) Thisisused to find the nextlevel ADS(s) and the related implute(s).
It traverses the current ADS with the providesl(s) and finds the leaf node(s) storing address(es) of the 8DS(
at the next level to continue with. Finally, it outputs thé senext-level ADSs and theitkey, valug) pairs.

The client use8Verify as a recursive process to verify the proof. It first verifiestibttommost ADSs. If they are all
accepted, then it uses their digests together with the pritthe above-level ADSs to verify the level above, and so
forth. Finally, when the upper-most level is reached anahglsidigest is obtained, it is verified against the metadata.

4. Outsourced Database Scheme
An outsourced database requires certification and veigitalgorithms, similar to an ADS.
Definition 1. An outsourced database scheme consists of three PPT algorithm8KeyGen,0Certify,O0Verify):

e OKeyGen(1¥) — (sk pk): is a probabilistic algorithm run by the client to generatepair of secret and public
keys(sk pk) given the security parameter k. She keeps both keys, anelsshialy the public key with the server.

e OCertify(pk,cmd) — (ansm): is run by the server to respond to a command cmd issued bylirg.clt
produces an answer ans and a praothat proves authenticity of the answer. If the command is dification
command, the answer is empty, and the proof shows that th#icatidn is done properly.

e OVerify(pk skcmdansm,st) — ({accept,reject},st'): is run by the client upon receipt of the answer ans
and proofrrfor a command cmd. It outputs aaccept’ or a ‘reject’ notification. If the command intended a
modification and the verification result is¢cept’, the client updates her local metadata accordingly (t9.st

Definition 2 (ODB security game). There are two parties playing this game: the challenger wtis as the client,
and the adversary who plays the role of the server.

Key generation The challenger generates the private and public key pslirpk) using0KeyGen. She keeps both
keys locally, and sends the public key to the adversary.

Setup The adversary specifies a command cmd (either a query or aficeddin) together with an answer ans and
a proof 1, and sends them to the challenger. The challenger runs therithm OvVerify, and notifies the
adversary about the result. If the command was a modificattonmand, and the proof is accepted, then the
challenger applies the changes on her local metadata. Theradry can repeat this interaction polynomially-
many times. Let D be the database resulting from verified camdsn

Challenge The adversary specifies a command Grad answer arisand a proofr’, and sends them to the challenger.
He wins if the answer ahss different from the result set of running chwh D, and(cmd, ans, 17') is accepted.

Definition 3 (ODB Security). We say that an ODB scheme is secure if no PPT adversary carmhe/i®@DB security
game with non-negligible probability.

The ODB security game covers all the specified guaranteegeatoess, completeness, and freshn@sge game
requires that no adversary can return a query answer tageithea valid proof such that the returned answer is differ-
ent from the answer that would have been produced by thelatatabase. If any one of the freshness, completeness,
or correctness guarantees were to be invaded, the adversaly have won the game.

4.1. Generic ODB Construction

A generic way to construct an ODB is to employ a regular DBM@gther with a DBAS built using a number of
ADSs. A common problem among all previous ODB schemes isxistemce of duplicate values in non-PK columns,
since making an ordered ADS (which is necessary for rangéeg)eequires a total order on the data items. The
existing solutionsT, 8, 10, 15] are not efficient (see Sectidf). Our HADS solves the problem efficiently, and easily
generates proofs for the answers to multi-dimensionaligaéand join queries in Sectidg).

The result set of a query with a clause on a non-PK column @untaduplicate values will potentially include
some duplicate values in that column. To identify these nee@and compare them with the result set of the other
clauses, we can relate each record to its respective (Uriiue

Definition 4. PK-set. For each distinct valuejvn a non-PK column C of a tabl&, the set of all PK values cor-
responding to yvin all records of T is called the PK-set ofjvand represented as RK(vi), i.e., Pk c(vi) = {k; €
PK(T) : 3record Re T st. kj € RPKAV; € RC}. WhenTand C are clear from the context, we just write ®4.

The PK-set includes only the PK values, not the whole recagkdg membership scheme can be used for assigning
the PK-set to a non-PK value regarding the client and sem@rgssing power and communication requirements of
the intended application. The only difference is the typerafof that is generated by the server and verified by the
client. This brings the flexibility to support multiple meeiship schemes, and select the best fitting one.

We construct the DBAS as follows: Since all values in the PKiem(s) are distinct, we use a regular (single-level)
ordered ADS to store their security information, similathie ones presented if,[14]. An example ADS for storing
the PK column of thétudent table using an authenticated skip list is presented in EigarFor a non-PK column,
for simplicity, a two-level HADS stores the security infoation: the distinct values are located at the first (upper)
level (i.e., each unique value is stored exactly once, witlzmy duplicates), and the corresponding PK-sets of these
values are located at the second (lower) level. A sample HAIDStoring theMajor column of theStudent table is
illustrated in Figureda It uses an authenticated skip list at the first level, wheagds are tied to Merkle hash trees at
the second level storing the corresponding PK-sets.

The client locally stores the digests of the HADSs of eachcteble column as metadata. Later, she checks the
authenticity of server’s answers against these digestis mathod requires the client to store digests in the number
of searchable columns in the database. As an alternativgrdelse client can put the digests of searchable column
of each table in another ADS (the table ADS), and on top of tineshe another ADS (the database ADS) just as
in Figure4h. Then, she needs to store only the digest of this new (falghléHADS as metadata. One may further
extend this idea to multiple databases a user owns, and thkipl® users in a group, and so forth. By increasing the
number of levels of the HADS, it is possible to always makeghe client stores a single digest. This presents a nice
trade-off between the client storage and the proof-vetitiogperformance. For the sake of simple presentation, we
will employ two-level HADS constructions.

Authenticated reange queries ensure completeness ofghig. fereshness is provided through storing the HADS
digest(s) at the client side. For correctness, we storedfatble corresponding recort(record), with each PK. In flat
ADSs like the accumulator, the hash values are tied to thmeiés, while in tree-structured ADSs, the hash values are
stored at the leaves. The ADS of the PK column of a talikebuilt using the set of all PK values and hashes of their
records{(ph,h(record))}i@l as (key, value) pairs. For a non-PK searchable col@pnaf a tableT with d distinct
values{vi}id:l, the HADS is constructed as follows: For each distwct Cj, a second-level ADS is built using the
(key, value) pairg (pks, h(records)) }, wherepks € PK(v;). Then, a first-level ADS storing paifgvi, h(h(v;)||h(digest
of the respective second-level ADS)is constructed.

The client outsources these (H)ADSs along with the databalsiee keeping their digests locally. Later, upon
receipt of a proof and answer, she performs the verificatsimgthe information given in the proof and the records in
the result set. If all records are used (discussed in Sedtibd) and the proofs verify according to the local digests,
the client accepts the proof and the answer.

HADS proofs. The HADS membership proofs for non-PK columns consist af parts: the first part proves the
(non-)existence of theniquevalue(s) in the column, and the second part ties each valtleetoespective PK-set.

A key difference with a regular ADS is that after showing thxéstence of a value in the first-level ADS, all values
in the related second-level ADS (storing the related PK-sleduld be included without further computation, since
they all share the same value in the queried column. Thisceslboth the proof size (communication) and proof
generation time (server computation). But the client veaifon cost for HADS is very close to ADS, since she needs
to reconstruct the whole second-level ADS along with the imenship path in the first-level ADS. For the ADS, the
client reconstructs the whole sub-tree consisting of tHeegin the proof. Both asymptotically and based on our
performance measurements, those are equivalent tasks.

Consider a table witll distinct values in columg;, each repeatedtimes, on average, leading td records in
total. Using a duplicate elimination mechanisim 8, 10, 15], we can store such a table inside a regular ADS. The
HADS builds a first-level ADS of sizd, whose leaves are each connected to a second-level ADSeaf &ading to
HADS sizerd. Therefore, the server storage remains the same. HowbeeADS proof size and proof generation
time of query forv; € C; are bothO(logrd +r) = O(logr +logd +r), while those of the HADS are bot(logd+r).

The ADS uses a range query wit(logrd) cost, while the HADS needs to fingd at the first-level ADS with cost
O(logd). They both then accessonsecutive values as the result set. This is further eetail Sectiord.1.1

4.1.1. Proof Generation

We now provide details on how the DBAS generates proofs. isider different cases where the query has only

one clause, or multiple clauses. For each case we discusthb@xoof is generated, and what is included in the proof.

One-dimensional queriescontain only one clause. There are two possible cases:

e The clause is on the PK column For example, the query iSELECT * FROM Student WHERE StdID >
105. The server asks the HADS of the PK column of fwadent table to compute and return its range proof,
and sends it back to the client. The proof includestitbendaryrecords, and all internal nodes’ values required
for verification at the client. Figur8b depicts an example, using authenticated skip list as thenyidg
ADS, where the result set is (106, 107, 108), and the boundanrds are 105 angw. The proof looks like:
vo=h1,h2,h(104),108,06107,108 40"

e The clause is on a non-PK columnA sample query iSELECT * FROM Student WHERE Major=‘CE’.The
server uses the HADS of th jor column to findCE at the first level. If not found, he puts the non-membership
proof invo. Otherwise, he puts theE’s membership proof and all values in its PK-set in tiee Due to storing
duplicate-eliminated data, the first-level ADS is very dmaihd all values in the second-level ADS are used
without further computation. The proof looks likeo="h(—),CE(101,102106),h'5,h(+x)’, using Figure?.

Multi-dimensional queries. For each clause, the server asks the corresponding HADSdatg) proof, collects

them into the verification objeato, and sends it to the client. Upon receipt, the client ver#ikproofs one-by-one,
and accepts if all are verified. If the clauses were conndoye®R’, each proof verifies a subset of the received
records, and the result set should be the union of all veriBedrds. For ‘AND’, each proof verifies a superset of
records in the result set, and the answer is the interseofioesults of individual clauses. The ‘AND’, ‘OR’, and
‘NOT’ operations among clauses are handled as set int@yeeanion, and complementation on the authentic PK-sets
given by the proof. The resulting set of records must be theesas the result set. An important distinction between
our HADS and many previous schem@&s12, 15, 32] is thatour proofs can be compared and combined togethier
simple set operations, since they authenticate PK-sets.

e One clause on the PK, the other(s) on a non-PK columnFor example, the query iSELECT * FROM
Student WHERE StdID>105 AND Major=‘CE’. Since the order of clauses is not important for the proof,
we can consider the non-PK clause first, then apply the PKselam the results. Therefore, the server first
applies the non-PK clause on the corresponding first-lelx$ Aand then, applies the PK clause on the resultant
second-level ADSs. Finally, he adds them both towbeand sends it to the client. On Figurethis method
produces the proafo="h(-»),CE(h(101),102106),h'5,h(+x)".

¢ Both (all) clauses on non-PK columnsA sample query iSELECT * FROM Student WHERE BCity=‘Istanbul’
AND Major=‘CE’. The server generates one proof for each clause, eachmiogttie first-level ADS proof for
the value itself (e.gIstanbul andCE) and the respective PK-set, and sends it to the client inkieleo. Each
proof proves authenticity of a set of PK values (of the sarhkejahat can be combined and compared together
using proper set operations (intersection, union, and ¢emgntation).
The above process can be generalized to more than two clandesipports any combination of ‘AND’, ‘OR’,
and ‘NOT’ operators. The client verifies the proofs and atxépe answer if the result matches the result set. Note
that in all our proofsno additional records are sent to the client on top of the resli set of the original query.

4.1.2. lllustrative Examples

We give some examples to better understand our construction

The query: key=Student, value={(major, CS), (stdld, 103)}

Normal

key=major ADS nodes
value=CsS Contained in the
query result

Required for

m Q reconstructing

the proof sub-list
key=stdld

value=103

Figure 7: Proof generation f@ELECT * FROM Student
WHERE Major=‘CS’ and StdId=103.

Selection in a two-level HADS Figure 7 presents
an example showing proof generation with a two-level
HADS, for the query SELECT * FROM Student WHERE
Major=‘CS’ and StdId=103 translated by DBAS into
‘(Student, { (Major, {CS}),(StdId, {103})}). The
first level is an authenticated skip list containing unigqaé v
ues of theMajor column, and the second level has three
Merkle hash trees containingtdId values matching each
Major value (i.e., their PK-sets). The first-level ADS needs
to prove membership ofs. This can be done by returning
‘h’1,CS,h(EE),h(+0)’; essentially the searched value together
with the hashes of the nodes required to obtain the correspon
ing digest. At the second level, the Merkle tree needs tog@rov
membership ofl03. This is done by returningl03h(105)".

The generated verification object will look likeo="h’1,CS(103 h(105)),h(EE),h(¢)’.
Verification is done in a bottom-up manner. The client verifies the PK-
IEI EI |h(105)| |h(106)| |h(107)| |h(1os)| H 1

sets’ proofs. If all are verified, it goes on to use them foiifyerg the

EHEI M H » column ADSs’ proofs. If this step also was successful, issilts are used

to verify proofs of the table ADSs. The database ADS proofasfied

3 in a similar manner. If all proofs are verified employialy andonly the

records in the answer, the client accepts the answer asndigthe
Since verification is accomplished similarly at all levelse give

an example showing verification in the ADS of FiguBd, where

4 vo='h1,h2,h(104), 109,06,107,108 h(+x)’is the proof given for SELECT
* FROM Student WHERE StdID>105’. The verification algorithm ex-
tracts the result se{106,107,108 and boundary record$105,+e0},
checks if 105:106<107<108<+o, and computes the hashes of records

in the result set (step 1). Then, it uses h(104) to comp@dstep 2). In

Figure 8: Proof verification fovo="h1,
h2,h(104),108,06107,108 h(+x)’.

the step 3, it uses'® and h(107) to computé® which is used together
with h2 to compute H, which in turn, is used along with h1 to compute

H6. Finally, it uses 6 and h(+0) to computes 17, the digest of the computed ADS. Now, it compar&sdyainst the
digest stored locally (h7). This process is illustratediglly in Figure8. Note that, a full proof would also contain
information about the levels of these nodes in a skip listifhose parts are hidden for simplicity.

5. Join

In relational database systems, data is organized (diyidéula set of tables. Thiin operations are then used
to collect data from two (or more) tables to produce new tesuih outsourced databases, the server should perform
the join and generate the proof that will be verified by therdi The server can utilize any existing optimal join
algorithm, since we put no restriction on the DBMS part. éast, we design our DBAS proof generation algorithms
to produce efficient proofs minimizing the servers effdre tommunication, and the clients computation.

10

5.1. Overview

Our join algorithms use HADSs for both (all) tables that andtlon the columns on which the join is formed.
Since the HADSs keep the same relationships among the évalyg¢ables they are created for, we can generate
proofs proving correctness of those relations.

Without loss of generality, consider the (most widely used@-to-many relationshif® xyq—rig S, i.e., the PK
column ofR, rid, is used as a foreign key @ R contains only distinct values in columid, while S may contain
duplicate values. The HADS df ties each distinct value irid to its respective PK-set ia. Now, we can easily
compare the ADS ok built onrid with the first-level ADS of the HADS o§ (storing unique values) built ond,
and generate efficient proofs. (Note that only the firsti&RS of the HADS, which is very small in size, is used for
comparison, and in case of any match, all values in the réspesecond-level ADS are reflected into thewithout
further computation.) Since the values are stored sotedsérver traverses each ADS only once.

Efficient proof generation. Compared toZ, 20] that perform a range query on the second table for each edlue
the first table, our solution is much more efficient as it cotsseange queries into equalities for matches. llrtiat
uses range queries efficiently, for each value in the ADS eftahle, the set of matching values in the ADS of the other
table is surrounded btyvo morerecords, for completeness. Since we store and compareamaues in HADSSs, a
value in the (H)ADS of one tableither matches exactly onalue in the (H)ADS of the other table (as shown by
equality invo), or does not match anyalue in the other (H)ADS (shown using range queries). Iritaud the first-
level ADSs that we use for proof generation are much smadierpared to those of all previous work, reducing the
proof size and proof generation time.

Other join types. Our HADS-based solution supports non-equi-join and rwi#ty join as well. Although an
inefficient way of doing a non-equi-join betwe@&nands is performing a range query ahfor each record irR,
our non-equi-join algorithm traverses each HADS only oraee] is very efficient. Our algorithm for multi-way join
gueries can be generalized to support queries of the Rorg_5 S Xa—a T Xa=a ..., betweem tables.

5.2. Two-way Join

Consider equi-join on two tables ands represented aB xc,—c; S, whereC; andC; are columns of ands,
respectively. The HADSs of these columns will be used foropgeneration. We categorize possible cases and
discuss each one separately.

Either C; or C; is a PK columnthat is used as foreign key in the other table. The genevatista set of PKs that
can be used for comparison or combining with oth@s.

The server useHADS,(Ci) andHADS(C;) for proof generation. He starts by the smallest value (&fimost
leaf node in a tree-based ADS) in the first-level ADS of onehef HADSs, and searches for that value, gayn
the other HADS. If the value is found on the other HADS, bothuga are inserted into the showing a matching.
Otherwise, the boundary records (the tamnsecutivevalues on the other HADS that would have been located
between them), together with tlhg are inserted into theo. This shows that; has no matching on the other table.
Once finished working on it, he jumps to the nexpectechode. By the expected node, we mean a node that either
is immediately after the current node or stores the closssewvo the current value of the other HADS. If the current
and expected nodes are not successive, then the requireth@tiate information (e.qg., for authenticated skip tis,
levels and digests corresponding to a part of the ADS notided in the proof) needed for verifying the ADS by the
client, will be added to theo. We use the algorithrRindNext to find the expected node:

FindNext(v;) — (nodg,nodg) If v; is null, then return the node immediately following the @mtrnode asodg
(node will be null). Given a valuey, if a node storing; is found, add the required information of the interme-
diate nodes into theo and return the node storing asnodg (node will be null again). Otherwise, add the
needed information of the intermediate nodes intovihand return the tweonsecutivéoundary nodesodg
andnodeg storingv; andv, respectively, such thaf < vi < v.

Consider the joilstudent Xgpara—stara S2C, where both tables have an HADS on colugtdId: HADSs ygent (StdId)
andHADS;xc(StdId). The proof generation works as follows: Traverse both HADS the leftmost leaf node (at
the first level) storing the valueg (in HADSssugent (StdId)) andv; (in HADSsc(StdId)). Possible cases are:

e v = V;: Add them into thevo (showing a matching), run thieindNext () on both HADSS to find the next
valuesv, andv,, and repeat the process withandv,.

11

e v; # V;: Add the larger value, say, into thevo and runHADSo¢(StdId).FindNext(vq) to find a matching
onHADSsc(StdId). If it returns one nodenode, a matching has been found, repeat the processwyigmd
node.val. If it returns two nodesjodg andnodg, there is no matching, but the valueraidg may match that
of the node next te;. Hence, add;, nodg.val, andnode.val into vo and repeat the process witlode.val
andnode.val, wherenode=HADSs;ydent (StdId).FindNext() is the node next tw;.

Example. Using HADSs;ugent (StdId) from Figure 3a and
HADS;,c(StdId) from Figure 9, we generate proof foBtudent
Mstara=staza S2C. For simple presentation, we put in tkie only the
values and hashes stored on nodes, and leave out the otbemanf
tion required for verification (e.g., the level in an autheatied skip
list). Furthermore, we separate each round by a column attsp
belonging to each HADS inside a round by a semi-column *;d an
values inside each part by a comma ‘. Within a round, valoes
HADSstugent (StdId) appear first.

We start with the smallest values in the HADSg: = 101 and
vi = 101. Since there is a matching, 101 is added into \he
(vo='101;101(501,502,504)"). Then, thEindNext() is run on both
HADSs to find the next valuesv, = 102 andV, = 103. SinceV, > v,, 103 is inserted into theo and
HADSstugent (StdId).FindNext(103) is executed (during which(102) will be added into thevo as an interme-
diate value, resulting ivo='101;101(501,502,504) : h(102);103(503,504)’), returning the e@tioringvs = 103.
Due to the matching, 103 is again added into thee(vo='101;,101(501,502,504) : h(102)03103503,504)’),
and FindNext() is run on both HADSs that will result in:vs = 104 andv; = 106. Again, 106 is
added into thevo and HADSsyyaent (StdId).FindNext(106) is executed (during whichin(104),h(105) will be
added into thevo as intermediate values, resulting wo="101;101(501,502,504) : h(102)03103503,504) :
h(104),h(105);106(500,502,504)’), returning the nodeisy vs = 106, to be added into theéo due to the match-
ing. Then,FindNext() is executed on both HADSs, which will giver; = 107 andv,, = 108. 108 will be added
into vo andHADSs;ugent (StdId).FindNext(108) results invg = 108. Finally,vo will be vo="101;101(501,502,504)

: h(102)103103503,504) : h(104),h(105)06106500,502,504) : h(107)08108501,503)'.

Neither C; nor C; is a PK column. Each column is stored inside an HADS. If
each distinct value d; andC; has an average PK-set of sizandm, respectively,
with k matching records, the result set will hauwemrecords. Our proof is of size
O(k(n+m)), showing again the HADS proofs are efficient.

Imagine two table¥1 andT», both having an integer PK column and a non-PK
column of type character with two matching values ‘B’ and, ‘wWhose HADSs
are shown in Figurd 0. The algorithm, starting at the leftmost nodes of both
HADSs, finds out that BA, and executeS8indNext(‘B’) on Ty, leading tovo=
‘h(—), r1,B(102,104, 107);h{=),B(3562)". It goes on, putting intermediate
value h5 in thevo, finds another matching ‘F’, which is the last nodeTin
Later, FindNext(‘F’) on T, puts h6 invo, and realizes that both columns are
fully traversed. These steps yiald="h(—w), r1,B(102,104,107);h{),B(3562) :
h5F(105,108)E(8759,9658) : h{);h6,h{-o)'".

For verification, the client interprets the proofun, and investigates whether
the values in each step are either equal, or one is betwedwdhethers. If it is
correct, she adds them to the corresponding ADS list, and goeawith the next
step proof (any problem leads to rejection). Finally, shesubetiVverify() function of the (H)ADS to verify the two
ADS lists. If both passed the verification successfully, abeepts the proof, otherwise, rejects.

Figure 9: HADS ofstdId (tables2cC).

Figure 10: Non-PK join.

5.3. Queries with Join and Selection

The general query optimization rule for queries containviaigous operations is that the join operation is performed
after all selection operations, since the selection oarairesult in intermediate sub-tables (given as inputégaim
operations) that are likely to vary substantially in si3&][Since our proofs are all based on PK-sets, the results of

12

the selection queries are integrated easily into thosemtjeeries, resulting in small proofs (both communicatind a
computation). We distinguish the following cases:

e The selection uses the same column as the joinThe same HADSs are used to generate proofs for both
selection and join, i.e., the records in the result set sheatisfy the selection constraint in addition to the
join constraint. For example, the proof generation for §UELECT * FROM Student S, S2C C WHERE
S.8tdId=C.StdId and S.StdId > 105 starts from the node storing the value 104 (the boundaryrdg¢co
and both clauses are applied simultaneously during the join

e The selection uses different columns from the join The selection proof is generated first that results in an
authenticated set of PKsThen, if this is connected to the join clause with ‘OR’, theqf of the join clause
is generated independently, and both proofs are sent tegtihthe client. But for ‘AND’, the join proof-
generation algorithm should consider only those recordsdhe in the selection proof, instead of the whole
table, leading to smaller join proofs. The server runs tigedthm on sorted authentic PK-set resulting from
the selection proof, and the other table’s HADS. For each &Kevin the sorted authentic PK-set, if there is a
matching on the corresponding HADS of the other table, wectil on the proof. Otherwise, we supply a non-
membership proof. Taking the qUeBZLECT * FROM Student S, S2C C WHERE S.StdId=C.StdId and
S.Major =¢CS’, for instance, the selection proof supplies the sortedemtit set of PK value$103 105},
used together with tab&2C by the join proof-generation algorithm to compute the (dempjoin proof.

5.4. Multi-way Join

Since data is distributed over multiple tables, users ngyeisjueries with join on multiple tables, .Th,xc —c;

T2 Xg=q T3 X ..., to combine them back together. Yaegal. [1] performed the three-table join &§T1 xg—c;
T2) Mg=q T3) O (T1 Mg =c; (T2 Xg=q T3)). But the output of the join that is performed first is not a éabaving
an ADS on the column of the next join. Therefore, their AIMn@lgorithm is not applicable, and their AISM join
algorithm (which uses only one ADS on one table) is used aust&ssentially, they apply their AIM algorithm for the
first join, followed by AISM! We treat the case that all joins are on the same column sepafi@tm the case that the
columns differ, and present efficient solutions for all sachnarios.

Multi-way join on the same column. As noted
by Ramanet al. [39] and Yanget al. [1], these queries
are common in data warehousing applications, where
a fact table is joined with other tables, on the same
column. Our algorithm performs much better for the
multi-way join with all join clauses on the same column:
T1 Xa—a T2 Xa—a T3 Xa=ga -... With slight changes, it can
be generalized to support multi-way join amanibles.

We start by the smallest value in all HADSs. If all are
the same, this is reflected in the as a matching. Other-
wise, the maximum value among thewgy, is selected
and added into theo and all other HADSs are queried

Figure 11: Proof generation fa% »a_a T2 Xa_a T3. (i.e.,FindNext(Vmay) to either find a matching, or prove
non-existence of the value. This is repeated until the last
node of either HADS is met. The verification object is thenlfireal with the remaining intermediaries. Each HADS
is traversed exactly once, and no item is checked multipiesi Jumping to the maximum value when no matching is
found enables skipping the largest possible number of ngaesgiding an optimally efficient proof.

An example showing our proof generation fbirx,—aT2Xa—3T3 IS given in Figurell. It starts by the leftmost
nodes: 1,1,5. Since 5 is the maximumndNext(5) is run on bottT; andT,, leading tovo="h(—),h1,h(4)5;h2,h(3)5;
h(—),5". Then, it jumps to and processes the next nodes, which é@e7®,and thus continues RindNext(9) on
T1 andTs. Following the same logic, it finally output@="h(—), h1,h(4)5;h2,h(3)5; h(-»),5 : h(6),9;9; h(7)9:
h(15),16, 18;14,19;1719,19;19: h(20),h3, h{-);h(20),h4,h{-0);h(+)".

1Their algorithms are not directly applicable for multijaiase, so, they gave new versions m-AISM, m-ASM, and m-AlkkyTrequire prior
information about the third table for reducing the prootsif the first join, between the first and second tables, béfiereecond join is performed.

13

(a) The sample database. (b) T3 refers toT, who refers tdr;. (c) BothT1 andTs refer toTs,.

Figure 12: Ordering graphs for different cases.

Multi-way join on different columns . Since our proofs are composed of a set of PKs, we can compdre a
combine them together. To perform a multi-way join, we sef®it into a set of two-way joins (with selections, if
there exists any), and apply our two-way join algorithm ascdbed previously. For a query withjoins, we generate
and send proofs to the client who verifies them, and accepts the anéwkiproofs are verified. Note that the result
set is just the actual join result, not individual table item

To perform a multi-way join of the forrr Xg=c; T2 Xg=q T3, One way is to deal witlT, XG=c; T2 indepen-
dently fromT, xc,—c, T3, and generate the proofs directly using the HADSs. Anotleyr iw to perform one of them
first, and use its result, which is an authentic PK-set, tcegate the next proof. This means the proof for each join
depends on the previous join, which depends, on the pregedia. Since a join leaves out some records, using its
result for the next join is expected to generate smallerfgrdichus, we can perform the joins according to an order that
generates efficient proofs. We categorize the possible @skinvestigate how an efficient ordering can be employed.

Efficient ordering. We define therdering graphas a directed graph to show the relationship between thegtabl
and use it to determine the order of joins. The joined tabtdestitute the vertices, and an edge frono T; indicates
that tableT; contains a column that refers to a columiTin(and the join is on these two columns). The ordering graph
of our database model (Figute) is represented in Figur2a

Consider the case in Figuleb: We should perform th&, — T3 join first, followed byT; — T join. The reason
is that theT, — T3 join results in an authentic set Bf’s PKs that can be used in tiTe — T, join (that is onT,’s PK),
while the result oft; — T join (authentic sets of PK values of tablesor T) cannot be used il — T3 join that is on
T3's PK. Hence, performing the, — T3 join first, generates efficient proofs.

In Figurel2¢ bothT; andT3 use the PK off, as foreign key. Therefore, both joins are's PK, and the order
of joins does not matter. We perform either join first, detierthe authentic set of PKs @ contributing to the join,
and do the other join between this authentic set and the tdb&r. Figurel2ais also dealt with similarly. As both
joins output an authentic set of PK valuessat, the other join can be easily handled using this set and tier tdible.

Multi-way joins can be divided into a set of two-way joinsgdahe mentioned categories are used to determine the
order in which these joins should be performed to generétaesft proofs. In cases where the order is not important,
the DBAS can use the table sizes and database optimizatibnitpies to estimate the result size, and select the one
with small expected size3B, 40, 41].

6. Security Analysis

Theorem 1 (Security of HADS). Our HADS construction is secure according to Definit®employing HADS al-
gorithm names) if the underlying ADSs are secure.

Proof 1. We reduce security of the HADS scheme to the security of lyintpADSs. If a PPT adversarg wins the
HADS security game with non-negligible probability, we e it to construct a PPT algorithi& who breaks the
security of at least one of the ADS schemes, with non-nbtgigrobability. £ acts as the server in the ADS games
with the ADS challenger@;, ..., Cn, and simultaneously, plays the role of the challenger inHB®S game wittA.

Setup. € receives the ADS public keys from the respective challshged forwards them altogether #. The
adversaryA prepares a dataset D and gives ittovho employs the ADS challengers to generate the HADS camgain
the security information, and sends it backAo & keeps a local copy of D and the HADS. Note that this is inveditl
the adversaryd, and thus will not affect his behavior.

Query. A performs polynomial-many membership and update querieseibership query is accompanied with
the potential answer and proof, while an update query inekishiformation about the updaté.verifies the proofs of
membership queries and notifidsabout the results. For update querié€sasks the ADS challengers to prepare their
corresponding updates and sends themilt& also updates her local copies of D and the HADS accordingly.

Challenge. A chooses a membership query g, and gives it together with aweng, to £. A wins if £ accepts
the & while it differs from the real answer of the query q.

14

For A to win, & must be different from the real answer for at least one ADS5ARith its verifying sub-proofé
can find it through her local copy. Upon receipt qf & selects the membership query, answer and proof parts welate
to ADS, and forwards them t@;. AssumeA passes the HADS verification with non-negligible prob&pifi. (This
corresponds to the verification probability of ADES the others would be verified with probability on& lso passes
ADS’s verification with probability non-negligible p, brealgrthe security of ADS

Since we employ secure ADSs, p must be negligible for all A&¥isthe adversaryl has negligible probability
of winning the HADS game. Therefore, if the underlying AD8sacure, the HADS scheme is secure.

Theorem 2 (Security of the ODB scheme)Our proposed ODB scheme is secure according to Defingjqmovided
that the underlying HADS scheme is secure.

Proof 2. We reduce security of the ODB scheme to the security of therlyimy HADS. If a PPT adversaryl wins

the ODB security game with non-negligible probability, ve@ ase it to construct a PPT algorithfhwho breaks the
security of HADS scheme with non-negligible probabiliyacts as the server in the HADS game played with the
HADS challenge€, and simultaneously, plays the role of the challenger inQieB game withA.

Setup. & receives the HADS public key frofy and relays them on t@l (note that all HADSs built for each
searchable column will use the same key). The adverdamepares a database and hands it orttavho relays them
on to the HADS challenget. C generates the security information in the form of HADSs anddrds them back to
A through€&. € keeps a local copy of the database and the HADSs.

Query. A performs polynomial-many selection and update querieseléction query is accompanied with the
potential answer and proof, while an update query includgdgsrimation about the updatet verifies the proofs of
selection queries and notifigsabout the results. For update queri€saske to prepare the respective HADS updates
and sends them td. & also updates her local copy accordingly.

Challenge. A chooses a selection query cmd, and gives it together witmawer ans t€. A wins if £ accepts
the answer ans while it differs from the real answer of thergaend.

If A wins the ODB security game with non-negligible probahilitee can use it to break the security of HADS
scheme with non-negligible probability. For the adverstrywin, ans must be different from the real answer on at
least one HADS, HAQSbhut with a verifying proof. On receipg, selects the command, answer and proof parts related
to HADS from ans (she can find it since she maintains a local copy),fantards them te. If A passes the ODB
verification with non-negligible probability (£, can pass the HADS verification (i.e., break HADS securitif) thie
same non-negligible probability p. (This is because aleotHADS proofs will be verified with probability one, and
we only consider the verification probability of HAXBat is p.)

Since we employ a secure HADS, p must be negligible, whidiesrthe adversary has negligible probability of
breaking ODB. Therefore, our ODB scheme is secure (and geswthe required properties: correctness, completeness,
and freshness), if the underlying HADS is secure.

The proof is not specific to our two-level construction. Fdpar-level construction (Sectioh 1.9, € plays the
HADS game with a four-level HADS challenger. In general domn-level ODB constructiorg, should play the game
with an n-level HADS challenger, in a same manner. The protdf@probabilities will not be affected by this change.
Moreover, it is possible that different HADS types are usithimthe same ODB. Identical proofs per HADS type can
be employed then, and as long as all underlying HADS scheraesaure, we would obtain a secure ODB scheme.

7. Performance Analysis

Setup. To evaluate our ODB scheme, we implemented a DBAS prototygiey the efficient two-level HADS
construction, which uses FlexLis2]] at both levels, in C++ using Cashlib librarg]. We employ SHA1 with 160-
bit digests as our hash function, and 1024-bit RSA as théaligignature scheme. All experiments were performed
on a 2.5GHz machine with 4GB RAM and Ubuntu 11.10 operatirsgesy. The numbers are averages of 10 runs.
Our DBAS is deployed on the same machine where the DBMS resatel stores the database security infor-
mation. Dynamic queriesIfsert,Update,Alter,...) affect this part as well, after being converted into the

2We assume all HADSs are similar, and hence, there is only bakeager. It is straightforward to extend it to the casehwdifferent HADS
instantiations and multiple challengers.

15

4000

Proof size Proof generation time
T 3000 T

—— Tree-based —— Tree-based
35001 —&—HADS, 10 duplicates 9 —&— HADS, 10 duplicates
- = =Tree-based, Range query 25007 - - - Tree-based, Range query
30001 —e—HADS, Range query] —e— HADS, Range query
Aggregation—-based 2000} Aggregation—based

Proof size (KB)
= N N
o o (62
o o o
o o o

Time(ms)
=
[
o
o

1000

500

olem=A— ‘ ‘ ocoE—s ?
0 1 2 3 4 5 0 1 2 3 4 5
Number of records in the query result % 10* Number of records in the query result % 10*

(a) Proof size. (b) Proof generation time.

Figure 13: Proof generation time and proof size for onesgagueries.

(key, value)-based format. For example, the qUE&ELECT * FROM Student WHERE major in (‘CE’, ‘CS’)
and BCity=‘Istanbul’ is converted to(Student,{(major,{CE,CS}), (BCity,{Istanbul})}). We did not
implement a converter, but it should not affect the timingtesverhead is much smaller than the proofs.

We use a database containing three tatesdent andCourse tables, each with Zrandomly-generated records,
ands2c table storing the courses taken by students, withra@domly-generated records. There are two scenarios:
each registered student has taken 10 courses in the firgiramesmd 100 courses in the second scenario, on average.
(In the second case, not all students are taking courses sia®nly have 19s2¢ records.) This means a distinct
StdIdis used as a foreign key BRC 10 times in the first scenario, and 100 times in the secondsiceion average.

We observe the system behavior (proof generation time aodf gize) for different queries. Since proofs are
generated using only the hashes of values of column(s) fgrthie clause (not the whole record$le proof size is
independent of the record size Our scheme enhances the efficiency by reducing the conutatd proof size:

e The proofs are generated using only values of the requiredrots, and these values already exist in the DBMS
answer to the query.

e The concept of PK-sets divides a large ADS into small ADSs hiesiarchy. Hence, the proof size and the
computation time decrease as well.

e Using the PK-sets, there is a one-to-one correspondend@domatching records, and there is no need for
boundary records. This is a very important property for cotimgy boolean operations and join proofs easily.

Classification of previous work We compare our scheme against two types of previous work.aglgregation-
based approache&? 20, 43] generate efficient proofs and may enhance server perfarenahhey either do not
provide completenesd§ or have problems with dynamism and freshnelss P0]. We evaluate the performance of
a prototype implementation o2{)], denoted asdggregation-basedn our figures.

The tree-based approaches store the security informattoma-based ADSs, and use different methods for making
the duplicate values uniqué,[8, 10, 15] (and support dynamism). Since they produce the same nuafilaistinct
values (= number of records in the tableir ADS sizes are the sapieading to similar performances. For the sake
of comparison, we concatenated each duplicate value withlaca number as in/] to implement a regular ADS and
compare against our HADS. This is referred totase-basedin our figures, and it corresponds to all these works, if
they use a similar underlying ADS.

7.1. Selection Queries on One Table

One-clause queries We investigate the case that the clause is on a non-PK colemyn SELECT * FROM
Student WHERE major=‘CE’). Since the number of distinct values in the non-PK columiess than that of the
PK column, the first-level ADS of the HADS storing a non-PKuwoh is smaller than the ADS storing the same
column in tree-based existing schemes. (The second-ldv8isfare included in whole, without any computation.)
Because some values are repeated on non-PK columns, whieeeBK column contains only unique values. The

16

Proof size Proof generation time
6000

8000

Tree-based, two non-PK clauses

Tree-based, two non-PK clauses

7000}| = = = Tree-based, one PK and one non-PK clauses/ = = = Tree-based one PK and one non-PK clauses/
—&— HADS, one PK and one non-PK clauses 5000 —&— HADS, one PK and one non-PK clauses 4 1
60001 —©— HADS, two non-PK clauses | —©— HADS, two non-PK clauses

4000+

Proof size (KB)
w B a
o o o
o o o
o o o
Time(ms)

w

o

o

o

2000
2000+

1000
10001

0 1 2 3 4 5 0 1 2 3 4 5

Number of records in the query result x 10 Number of records in the query result X 10
(a) Proof size. (b) Proof generation time.

Figure 14: Proof generation time and proof size for querils two clauses.

proof generation time and proof size for a non-PK clausegudiADS are thus expected to be smaller compared to the
previous tree-based approaches. Figd@sand13bconfirm this, showing-5x smaller proofsand~3x faster proof
generations There is a~10% efficiency gain even with range queries. The aggregditémed approaches generate
efficient (constant-size) proofs, with a server computatiost close to ours.

Two-clause queries There are two cases: the query has either one PK and onekatatises (e.g. SELECT
* FROM Student WHERE StdID>105 AND major=°‘CE’), or two non-PK clauses (e.ELECT * FROM Student
WHERE BCity=‘Istanbul’ AND major=°‘CE’).In the HADS of non-PK columns, all values of second-levBI®s
are included in the result (without further computatiorénbe the dominant factors are the proof generation time and
proof size of the first-level ADSs. We apply each clause omvwe HADS and generate two proofs to putvno.
Figuresl4aand14bshow the proof generation time and proof size for two-clayseries. We observe2x smaller
proofs and~1.5x faster proof generations using HADS, compared to ptes/iree-based approaches, for the case with
one PK and one non-PK clauses. For the case with two non-Risedathe proof is-5x smaller in size, and-3.5x
faster in generation time, compared to previous tree-bagptbaches.

Multi-clause queries. We can separate this case into two cases depending on whathef the clauses is on the
PK column or none of them are. The server asks each HADS stallieto give its first-level proof. The total proof
generation time and proof size of the server is the summafitme respective values taken by all HADSs. We are not
presenting any figures for this, but based on the resultepted above, we expect similar gains. Indeed, the gains
would be even greater if all clauses are on non-PK columns.

Client verification time Client computation. We observed the HADS enhances client
8000 — Treobased ‘ ‘ | performance compared to the aggregation-based apprddéhas,
7000} —a— HADS with 10 duplicates 1 43], while posing similar performance as the tree-based iegjst
50001 —o HADS with 100 duplicates | schemesT, 8, 10, 15]. The reason is that while the server just puts
Aggregation—based

the whole second-level ADS into tive, the client has to reconstruct
the second-level ADS and the proof path in the first-level ADIse
computation at the second-level (first-level) ADS of our HARS
very similar to that of the previous schemes at the lower éappart
of their ADSs. Hence, the total client computation using ld&DS
and previous ADSs are very close. In tree-based approaties,
client has to verify all received ‘signatures’. These algstrated in

7 : : : : Figurel5for one-clause queries.

0 1 2 3 4 5

Number of records in the query result ;4 Overhead Another important factor is the communication over-
head, i.e., how much does the proof increase the traffic. &ptbof
size is independent of the record size, for tables with snealbrd
size (~1 KB), the proof size is about 10-40% compared to the reszdt #As a real example, we used Btaident ta-
ble from Ko¢ University database that stores (student Hne, address, phone, email, standing, department, advisor
photo) for each student. The records of this table are betwesnd 20 KB in size, where the photo size is dominant.
Using the HADS for proof generation imposes only 1-4% comitation overhead. The results are shown in Figure

a
o
o
[=]
T
L
O

Time (ms)

Figure 15: Client verification time.

17

Proof overhead on the query result Proof generation and verification time overhead

0.5 T T 0.16
—8— Record size = 1 KB N
o —e— Record size = 10 KB g 0.14—»/’_‘9/*/*—
N =
= 5012}]
< £ 01r —&—1Mbs]
> ~
2 ——
& % 608 10 Mbs ||
(=2 =
3 S 0.06
N 3
“g é 0.04f
a S
O 0.02
r : 0
0 1 2 3 4 5 0 1 2 3 4 5
Number of records in the query result % 10* Number of records in the query result % 10*
(a) Proof size overhead. (b) Proof time overhead.
Figure 16: Proof overhead and client verification time.
Proof size Proof generation time
12000 T T T 7000 T T T
—— Tree-based —— Tree-based
—&— HADS with 10 duplicates 6000} —8— HADS with 10 duplicates
100007| _e— HADS with 100 duplicates] —e— HADS with 100 duplicates

5000}
& 8000|
X @
p £ 4000f
N 6000} >
5 § 3000
& 4000t ¥ :
2000} 1
D
2000t]

1000¢

0 1 2 3 4 5 0 1 2 3 4 5

Number of records in the query result % 10* Number of records in the query result % 10*
(a) Proof size. (b) Proof generation time.

Figure 17: Proof generation time and proof size (key-baset).j

16a Compared to similar algorithms such a8]that requireO(logN +t) cost for a query result of sizeusing range
queries, the cost of our algorithm@log |Ci| +t).

For time overhead, we compared proof generation time plestclerification time to the total time taken for
preparing the result set (server) and the result set tratigfe. This is, however, an upper bound since the proof
generation time normally overlaps with the server companaime. As Figurel6bshows, using 1 Mbs and 10 Mbs
bandwidths, the time overheads of our scheme are B and~14%, respectively.

7.2. Join Queries

We consider two cases. key-based jointhe stdID column of theStudent table is referred to in th&2c
table as a foreign key (e.ELECT * FROM Student,S2C WHERE Student.StdID=S2C.StdID), whileingeneral
join, we add two unrelated columns of the same typ&8ttadent andCourse for this join (e.g.,SELECT * FROM
Student,Course WHERE Student.TempColl=Course.TempCol2).

In key-based joinscenario, we consider two cases. In the first case, eachtuaechosen 10 courses, therefore,
the first-level ADS stores the students, and for each onesanselevel ADS containing 10 elements stores the selected
courses. The first-level ADS contains all*1€tudent IDs. In the second case, each student has taken ufsesp
therefore, a second-level ADS containing 100 courses ketirto each first-level ADS. The first-level ADS in this
case is smaller, containing 1€ecords. The experimental results are shown in Figlifemnd17hb The figures show
~2.5x enhancement for both proof size and proof generatina ih 10-course case. There ardx smaller proofs
and~6x faster proof generations in 100-course case, compaithe toee-based works.

18

Proof size Proof generation time

8000

6000

—— Tree—based
—e&— HADS with 10 duplicates
—e— HADS with 100 duplicates

—— Tree-based
7000 —=— HADS with 10 duplicates
—e— HADS with 100 duplicates

50001

60001
4000

Proof size (KB)

PN
o o
o o
o o

Time (ms)
w
o
o
o

30001
20001

20001

10001
1000¢

0 : : : , 08 ; : : :
0 1 2 3 4 5 0 1 2 3 4 5
Number of records in the query result % 10° Number of records in the query result x10°

(a) Proof size. (b) Proof generation time.

Figure 18: Proof generation time and proof size (genera) joi

We observe a similar behaviour for the general join scena@re each value in temporary colunfsapCol1
and TempCol2 is duplicated about 10 or 100 times, similar to our main stenaFiguresl8aand 18b show the
experimental results. The proof sizes are redue8a and~4x in 10-element and 100-element cases, respectively.
The proof generation times are decreasé&k and~5x in 10-element and 100-element cases, respectively.

Asymptotic complexity. Moreover, the cost of the approach proposed bgtlal. [2] for joining two tablesT;
andT; of approximate siz& is O(NlogN), while that of ours iSO(N + N) = O(N). Compared to]] which has the
same asymptotic co§)(N), our HADS generates more efficient proofs as it does not wsbdhndary records for the
matching records, in addition to the fact that it operatesroaller ADSs. Assume that|Ci|,0 < a <1, records of a
column have matching on the other table. The cost of our jgioréahms using HADS it |G| «N/|Ci|+ (1—a)|Ci| =
oN+ (1— a)|Ci|, which means that the cost is close@¢/Ci|) whena is close to zero, and approact@N) asa
approaches one; i.e., our algorithm drops in the worst aageat of [1].

Communication overhead In our scheme, the proof size does
‘ ‘ not depend on the record size. This is an important diffexrdre
—=—Record size = 1 KB tween ours and the join algorithms proposed by Yamngl. [1],
02| —S~Recordsize = 10 K8 1 where the proof size increases with the record size. Fit@shows
the overhead of our proofs on the join query result with twaord
sizes: 1 KB and 10 KB. Our proofs add oniy1% overhead when
record size is 10 KB, and 6% overhead when record size is 1 KB.

Comparison to previous work. Join algorithms in 1, 20] al-
ways add two boundamyalues orrecords for each comparison dur-
ing a join. Our algorithm adds two boundarglues only for non-
matching records in a comparison. Talhlshows some concret®
i"_"\% : ‘ ‘ sizes related to these schemes in a similar setting, fordeksed

1 2 3 4 5 join. The client and server computation times for the sanyeldased
Number of records in the query result % 10°
Figure 19: Proof overhead, join are given in Table&. As.our ;cheme uses HADSSs built on col-
umn values, the computation times are independent of thardec
size, helping our scheme outperform thoselin |

Proof overhead on join queries
0.14, . .

I
i

0.08f

o
o
&

Proof size / query result size
o
=)
=

©
o
R

(=)
o

Table 1: Proof size comparison for join.

Record size| Yangetal.[1] | Pangetal.[20] | Our scheme

648 ~32NB
5128 <202 MB ~13 MB ~2MB

19

Table 2: Client and server computation times for join.

Client verification| Server proof generatioh
Scheme Record size Record size
64 B 512B 64 B 512B
Yangetal.[1] | 18s 128s 7s 100s
Our scheme 3.6s 1.4s

8. Conclusion

In this paper, we presented a hierarchical ADS for storimgsiiacurity information required for proof generation
in outsourced databases. The HADS extends the ADS to sugtpoirig duplicate values, and generating comparable
and combinable proofs efficiently (useful for boolean opmsaand joins). We employed the HADS to construct
outsourced databases with proofs for query result auttigntincluding completeness, correctness, and freshness
guarantees. We formally proved these properties using@umumified security definition.

Our outsourced database construction can provably haetet®n queries with one or multiple clauses, join
queries including equijoins, non-equijoins, band joine#$ on non-PK columns, joins over more than two tables, and
combinations of selection and join queries. Besides, wetfuced use of boundary records, we can easily support
clauses formed using the SQL ‘IN’ operator. This allows uptesent efficient proofs for a wide range of database
gueries. We leave concurrent proof generation as futur&wor

We have presented performance gains due to our solutiortlowg@revious work where regular (one-level) ADSs
are used. Our solution achieve8x smaller proofs in size and5x faster proof generation when HADS is used for
gueries with one clause. Moreover, for join queries we alebr4x enhancementin proof size anéx enhancement
in proof generation time using HADS, when each foreign keyejgeated 100 times, on average. With reasonable
record sizes, e.g., 5-20 KB in our Kog¢ University databsSeudent table, the communication overhead~gl%
compared to the result size, becoming even smaller wittetargcord sizes. These all confirm practicality of our
outsourced databases scheme.

Acknowledgement
This work is supported by GBITAK, the Scientific and Technological Research Council ofkey, under project
numbers 112E115 and 114E487, and European Union COST Adt4?06 and IC1306.
References
References

[1] V. Yang, D. Papadias, S. Papadopoulos, P. Kalnis, Autbated join processing in outsourced databases, in:
ACM SIGMOD International Conference on Management of d2889, pp. 5-18.

[2] F. Li, M. Hadijieleftheriou, G. Kollios, L. Reyzin, Dynaim authenticated index structures for outsourced
databases, in: ACM SIGMOD, 2006, pp. 121-132.

[3] J. Wang, X. Du, Skip list based authenticated data stiredh das paradigm, in: GCC’09, 2009.

[4] M. T. Goodrich, R. Tamassia, N. Triandopoulos, Supéicieiht verification of dynamic outsourced databases,
in: CT-RSA, Springer, 2008, pp. 407-424.

[5] G. Nuckolls, Verified query results from hybrid autheatiion trees, in: Data and Applications Security XIX,
Springer, 2005, pp. 84-98.

[6] Z. Liu, X. Chen, J. Yang, C. Jia, |. You, New order presaryiencryption model for outsourced databases in
cloud environments, Journal of Network and Computer Agpions 59 (2016) 198—-207.

[7] H. Pang, A. Jain, K. Ramamritham, K.-L. Tan, Verifyingropleteness of relational query results in data pub-
lishing, in: ACM SIGMOD, ACM, 2005, pp. 407-418.

20

[8] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, Authiicated index structures for aggregation queries, ACM
Transactions on Information and System Security (TISSEBQ}%). (2010) 32.

[9] J. Celko, Joe Celko'’s Trees and hierarchies in SQL forrigs® Morgan Kaufmann, Washington, 2004.

[10] P. Devanbu, M. Gertz, C. Martel, S. G. Stubblebine, Asuntiic third-party data publication, in: Data and Appli-
cation Security, Springer, 2002, pp. 101-112.

[11] H. Pang, K.-L. Tan, Authenticating query results in edgpmputing, in: International Conference on Data Engi-
neering, IEEE, 2004, pp. 560-571.

[12] M. Narasimha, G. Tsudik, Authentication of outsourciedabases using signature aggregation and chaining, in:
Database Systems for Advanced Applications, Springe6 200. 420—436.

[13] E. Mykletun, M. Narasimha, G. Tsudik, Providing autkieation and integrity in outsourced databases using
merkle hash trees, 2003.

[14] B. Palazzi, Outsourced storage services: Authertinand security visualization, Ph.D. thesis, Roma Tre Uni-
versity (2009).

[15] B. Palazzi, M. Pizzonia, S. Pucacco, Query racing: astpleteness certification of query results, in: Data and
Applications Security and Privacy XXIV, Springer, 2010, AF7-192.

[16] J. Wang, X. Chen, X. Huang, |. You, Y. Xiang, Verifiablediting for outsourced database in cloud computing,
IEEE transactions on computers 64 (11) (2015) 3293-3303.

[17] X. Chen, J. Li, J. Weng, J. Ma, W. Lou, Verifiable compidatover large database with incremental updates,
IEEE transactions on Computers 65 (10) (2016) 3184—-3195.

[18] J. Xu, Z. Cao, Q. Xiao, F. Zhou, An improved authenticaskip list for relational query authentication, in:
Broadband and Wireless Computing, Communication and Apptins (BWCCA), 2014 Ninth International
Conference on, IEEE, 2014, pp. 229-232.

[19] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong,& Stubblebine, A general model for authenticated
data structures, Algorithmica 39 (1) (2004) 21-41.

[20] H. Pang, J. Zhang, K. Mouratidis, Scalable verificationoutsourced dynamic databases, VLDB 2 (1) (2009)
802-813.

. H. oom, pacetlmetra €-0TIS In nash coding wilowanle errors, ommunications of the
21] B. H. Bl Spacelti de-offs in hash coding witlowabl C ications of the ACM 13 (7
(1970) 422-426.

[22] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, &aBoschi, P. Samarati, Integrity for join queries in the
cloud, IEEE Transactions on Cloud Computing 1 (2) (2013)-28D.

[23] Y. Zhang, J. Katz, C. Papamanthou, Integridb: Verifed| for outsourced databases, in: ACM CCS’15, ACM,
2015, pp. 1480-1491.

[24] B. Parno, J. Howell, C. Gentry, M. Raykova, Pinocchiceady practical verifiable computation, in: Security
and Privacy (SP), 2013 IEEE Symposium on, IEEE, 2013, pp-233.

[25] M. Backes, M. Barbosa, D. Fiore, R. M. Reischuk, Adsnar&arly practical and privacy-preserving proofs on
authenticated data, in: 2015 IEEE S & P, IEEE, 2015, pp. 28&-2

[26] A. Boldyreva, N. Chenette, Y. Lee, A. O'neill, et al., @ar-preserving symmetric encryption., in: Eurocrypt,
\ol. 5479, Springer, 2009, pp. 224-241.

[27] A. Boldyreva, N. Chenette, A. O'Neill, Order-presamgiencryption revisited: Improved security analysis and
alternative solutions., in: CRYPTO, Vol. 6841, Springd¥12, pp. 578-595.

21

[28] T. Xiang, X. Li, F. Chen, S. Guo, Y. Yang, Processing seguerifiable and efficient sgl over outsourced database,
Information Sciences 348 (2016) 163-178.

[29] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, X.-W. Wang,déting a dynamic data replication strategy to increase
system availability in cloud computing environments, Jaliof computer science and technology 27 (2) (2012)
256-272.

[30] M. Etemad, A. Kiip¢ll, Transparent, distributed, aedlicated dynamic provable data possession, in: Interna-
tional Conference on Applied Cryptography and Network Sig&gEpringer, 2013, pp. 1-18.

[31] E. Esiner, A. KiipciO. Ozkasap, Analysis and optimization on flexdpdp: A practamlltion for dynamic
provable data possession, in: Intelligent Cloud Computi€g’'14), 2014.

[32] P. Devanbu, M. Gertz, C. Martel, S. Stubblebine, Autitedata publication over the internet, Journal of Com-
puter Security 11 (3) (2003) 291-314.

[33] R. Tamassia, Authenticated data structures, in: Algors-ESA 2003, Springer, 2003, pp. 2-5.

[34] C. Papamanthou, R. Tamassia, Time and space efficigotitims for two-party authenticated data structures,
Springer, 2007, pp. 1-15.

[35] M. T. Goodrich, R. Tamassia, N. Triandopoulos, Effitianthenticated data structures for graph connectivity
and geometric search problems, Algorithmica 60 (3) (2005-552.

[36] W. Pugh, Skip lists: a probabilistic alternative to drated trees, Comm. of the ACM 33 (1990) 668-676.
[37] R. Merkle, A certified digital signature, in: CRYPTO’88pringer, 1990, pp. 218-238.

[38] P. Mishra, M. H. Eich, Join processing in relationalatzises, ACM Computing Surveys (CSUR) 24 (1) (1992)
63-113.

[39] V. Raman, L. Qiao, W. Han, I. Narang, Y. Chen, K. Yang, id, Lazy, adaptive rid-list intersection, and its
application to index anding, in: ACM SIGMOD, Vol. 11-14, 2ZQp. 773-784.

[40] C. Galindo-Legaria, A. Rosenthal, Outerjoin simpHfiion and reordering for query optimization, ACM Trans-
actions on Database Systems (TODS) 22 (1) (1997) 43-74.

[41] G. Graefe, Query evaluation techniques for large datab, ACM Computing Surveys 25 (2) (1993) 73-169.

[42] S. Meiklejohn, C. Erway, A. Kupc¢u, T. Hinkle, A. Lysynskaya, Zkpdl: A language-based system for efficient
zero-knowledge proofs and electronic cash., in: USENIXuBigcSymposium, 2010.

[43] E. Mykletun, M. Narasimha, G. Tsudik, Authenticatiamintegrity in outsourced databases, ACM Transactions
on Storage (TOS) 2 (2) (2006) 107-138.

[44] C. Papamanthou, R. Tamassia, N. Triandopolos, Auitegied hash tables, in: ACM CCS’08, 2008, pp. 437-
448.

[45] M. T. Goodrich, R. Tamassia, J. Hasi¢, An efficient dym@aand distributed cryptographic accumulator, in: Info.
Security, Springer, 2002, pp. 372—-388.

[46] M. Naor, K. Nissim, Certificate revocation and certificaipdate, Selected Areas in Communications, |IEEE
Journal on 18 (4) (2000) 561-570.

[47] D. J. DeWitt, J. F. Naughton, D. A. Schneider, An evailoratof non-equijoin algorithms, in: VLDB, Morgan
Kaufmann Publishers Inc., 1991, pp. 443-452.

[48] J. Benaloh, M. De Mare, One-way accumulators: A deadiztd alternative to digital signatures, in: EURO-
CRYPT'93, Springer, 1994, pp. 274-285.

22

[49] M. Goodrich, R. Tamassia, Efficient authenticated iditaries with skip lists and commutative hashing, US
Patent App 10 (416,015).

[50] C. Erway, A. Kipci, C. Papamanthou, R. Tamassia, dbyic provable data possession, in: CCS’09, ACM,
2009, pp. 213-222.

Appendix A. ADS Definitions

Definition 5. An ADS scheme consists of following three polynomial-time algorithn3gl];

KeyGen(1¥) — (sk pk) is run by the client to generate a private and public key fak pk) given the security pa-
rameter k. She shares the public key pk with the server.

Certify(pk cmd) — (ansm) is executed by the server to respond to a command issued blyghe The public key
pk and the command cmd are given as input. If cmd is a query emihnit outputs a verification proaf that
enables the client to verify the authenticity of the answex. &f cmd is a modification command, then the ans is
null, andrris a consistency proof that enables the client to updatedwalimetadata.

Verify(sk pk,cmdans mT,st) — ({accept,reject},st’) is run by the client upon receipt of a response. The public
and private key$pk,sk), the answer ans, the proaf, and the client’s current metadata st are given as input.
It outputs anaccept or reject based on the result of the verification. Moreover, if cmd wasadification
command and the proof is accepted, the client updates hexdatet accordingly (to $}.

Definition 6. Correctness of ADS. For all valid proofsitand server answers ans in response to client commands, the
verify algorithm accepts with overwhelming probability.

Definition 7. The ADS security gameis played between the challenger who acts as the client amddiersary who
plays the role of the server:

Key generation The challenger runs KeyGéfK) to generate the private and public key pésk pk), and sends the
public key pk to the adversary.

Setup The adversary specifies a command cmd, and sends it togethearwanswer ans and proaf to the chal-
lenger. The challenger runs the algorithm Verify, and nesifihe adversary about the result. If the command
was a modification command, and the proof is accepted, therhhllenger applies the changes on her lo-
cal metadata accordingly. The adversary can repeat thisradtion polynomially-many times. Call the latest
version of the HADS, constructed using all the commandsevhaxofs verified, D.

Challenge The adversary specifies a command cmd, an answér and a proofrr, and sends them all to the
challenger. He wins if the answer dris different from the result set of running cmd on D, and camd, 17’ are
verified as accepted by the challenger.

Definition 8. Security of ADS. We say that the ADS is secure if no PPT adversary can win th& gdaurity game
with non-negligible probability.

Fact 1 (Security of ADS). The ADS is secure according to Definitin

This is proved for different schemes separately. Mer&i& $howed the security of Merkle hash tree, Papamanthou
et al.[44] did the job for the authenticated hash table, Goodeithl. [45] proved security of the accumulator based
ADS, Noar and Nissim46] showed security of the 2-3 tree, and Papamanthou and Tanjadkproved security of
the ADSs based on authenticated skip list or red black tree.

23

Appendix B. Additional Discussion

Appendix B.1. Modification

As an example targeting modification, consider adding a reserd into theStudent table: INSERT INTO
Student VALUE(109, ‘Cem’, ‘CE’, ‘Izmir’). This adds the painQ9,h(record)),whereh(record)=h(h(109) | |
h(‘Cem’) | |h(‘CE’) | |h(‘Izmir’)), into the ADS of the PK column. We further need to addq,h (record))
to the second-level ADS associated witlh. Once this is done, since the digest of t®ADS would be modified,
we need to reflect this in theajor ADS as well. Similarly, we need to construct a n@amir ADS, contain-
ing only (109,h(record)), and add its digest to theCity ADS. Therefore, using two-level HADS constructions,
there will be three parts in the translated command9(h (record)) to be executed by the ADS of the PK column,
(CE, (109,h(record)))for theMajor HADS, and {zmir, (109,h(record)))fortheBCity HADS. In a four-level
HADS construction, the translated command looks liketu@ent, {(StdId, (109,h(record))), (Major, (CE,
(109,h(record)))), (BCity, (Izmir, (109,h(record))))}).

Appendix B.2. Tables with Composite Keys

Some tables may employ composite keys that makes the cofistryproblematic: We cannot relate a non-PK
column to any subset of the PK columns due to the existencegifadte values. Previous schemés5 cannot
handle this case efficiently, as they need to construct amdnustiple ADSs for each column.

HADS solves this problem efficiently. The con-
catenation of multiple foreign keys forms a composite
key, generally. We use this composite key as the PK
of the table, and use it to construct the HADSs. One
HADS is constructed for each searchable colurima (
cludingforeign key columns), relating the column’s val-
ues (containing duplicates) stored at the first-level ADS
(remember that the ADS contains only one copy of each
replicated value) to the unique PK values (constructed
(@as the composite key) stored at the second-level ADSs.
These HADSs can be used in connection with other
HADSSs to generate the proofs. An example is depicted
in FigureB.20where the composite key for taldec is
StdId||CrsId. Since neithegtdId norCrsIdis a PK in tables2cC, they both have their respective two-level HADSs,
where, for example, uniquetdId values are stored at the first level ADS, and for each uniqdéd, all associated
composite keystdId||CrsId are stored at the second level ADS (a similar HADS is builtfosI4).

Figure B.20: Storing the columiark from tables2C with
composite PK§tdId andCrsId).

Appendix B.3. Special Joins

Equijoin is defined to be the join in which the operator is diyf38, 47]. The non-equijoin which is also called
theband join is defined as the join operation that the operator is notlag(i&8]; i.e., the values of one of the join
columns fall within abandof values of the other colum#f].

Equijoin of the form T;.C; = T».C; +n,n € N. This is a special case of the equijoin. We treaC; = T>.Cj +n
as matching (instead af.C; = T».C;) and apply the equijoin algorithm. Proof generation for tueryT.a+ 1 =
Tp.a = Tz.a— 2 on Figurell works as follows: The algorithm starts with the smallesuesl 1, 1, 5, respectively.
Since the relatiom;.a+ 1 = Tp.a= Tz.a— 2 does not hold, the greatest number according to the relatibich is 5,
is used to find the expected node on the two other ADSs. Bug sircare not looking for 5 in the other tables, we need
to adjust our parameter. 5 would be matched with 5-2=Bjrso we rurFindNext(3) onT,. It will also be matched
with 5-2-1=2inT4, SO we rurFindNext(2) onT;. Using our join proof generation algorithm this way genesat=
‘h(—0),h(1)2;h23;h(—),5: 4;5;7: 6,9;9;9,17 : 15;14,19;17 : h(16),18;19;19kf) : h5,h(+);h(20),h4,h{-);’.
This shows that there are two matchings, (2, 3, 5) and (4, %o7)he queryr;.a+1=Ty.a= T3z.a— 2 on Figurell

Non-equijoin. The general form of a non-equijoin query|T§.C; — T2.Cj| < n,n € N. A simple proof generation
algorithm for this join is to select the HADS of the table wimaller number of records, and for each node of this
HADS, perform an authenticated range query on the other HADS this is less efficient regarding computation and
communication, due to the many intersections among thdtsetsuthenticated range queries return.

24

We madify our join algorithm slightly to support the non-gqin more efficiently, where each HADS is traversed
only once. We select the smaller HADS, and for each recotisHADS, compute the matching records on the other
HADS. Since one record may correspond to many records, we todeclude the boundary records (remember we
are using multi-proof ADSs). To prevent the values to be essed multiple times, we perform as follows:

o If the left boundary of the current record is greater thanrthbt boundary of the previous record, then it is
necessary, and hence we add the required intermediateiafion, the left boundary, the matching records, and
the right boundary into theo.

o If the left boundary of the current record is less than or étuthe right boundary of the previous record, there
may be common matching records. Due to the security of HARSghevents a malicious server from adding
or deleting matching records, there is no need to go backwdrds, we go on from the current position in the
second HADS, and add into tlve the remaining matching records until the right boundarpréc

Therefore, in both cases, the server traverses both HADEs. ofihe same facts hold for the client during the
verification. She only checks the given boundary recordsrandnstructs the HADS without the need to go back-
ward. This is an important observation that simplifies thentland server computation. Two helper functions
FindLeftBoundary() andFindRightBoundary() with obvious functionality are used during the algorithm

Assume that we want to execute the non-equijoin qliera— Tz.a| <
3 on the example given in Figui&.21 We start byT; (who has fewer
records) and for each record, find the set of matching recamds. For
the first record, 5FindLeftBoundary(5) andFindRightBoundary(5)

return the boundary records 5 1| >=3) and 9 (5—9| >= 3), re-
spectively. These boundary records together with the magatecords
oA ﬂ m in between, are added into thve: vo='5;1,3,5,9’. The next record is 7

for which |7 —9| < 3, hence, its left boundary record is already in the
proof, and we only need to find the right boundary record whsch4.
Since all matching records are already in th® we add only 14, i.e.,
vo='5;1,3,5,9 : 7;14’. Nothing is inserted for the next record, 9, since
T1 |9— 14| >= 3, meaning that even the right boundary is already in thefproo
leading tovo='5;1,31,5,9: 7;14 : 9;-". Regarding 24, since4— 14| > 3,
Figure B.21: Non-equijoin proof genera- tionwe callFindLeftBoundary(24) to find the left boundary record, which
scenario fofTy.a— Tp.a) < 3. addsh(19) as the intermediate information into te, and returns 20.
FindLeftBoundary(24) returns 28. There are no matching records in betweergfibre, only the boundary records
are added into theo='5;1,3,5,9 : 7;14 : 9;- : 24;h(19),20,28’. Since the endDf is reached, we add(30) as the
intermediate data daf,. Finally, the proofvo="5;1,3,5,9: 7;14 : 9;- : 24;h(19),20,28: h#);h(30),h(4e0)’ is returned.

Appendix C. Efficient ODB Construction

Different ADSs can be chosen for HADS levels subject to tiheguirements and the application. We employ
two-level HADSSs, with special role and considerations facle level, compare the existing ADSs and investigate
their eligibility to be used in each level. We consider theesses of ADSdlinear (e.g., one-way accumulatofd)),
sublinear(e.g., authenticated hash tabléd]), andlogarithmic(e.g., authenticated skip lis#9, 50)).

First level. This level stores the distinct values of a column, and gersrthe first part of the proof to be sent
to the client. Proof generation is based on the authendaatege queries, which implies that this level should use
anordered ADS. One-way accumulator and hash tables do not suppomtbferty efficiently, and hence cannot be
used for this level. Therefore, we choose the authenticatipdist (alternatively, the Merkle hash tree) to be used in
the first level. The proof time/space@log(|Ci|)) for an update, an@(log(|Ci|) +t) for a query withO(t) records in
the result set. There aj@ | distinct values, on average, stored in the first-level AD8réfore, the storage complexity
is 2|C;i|, which isO(|Ci]).

Second level This level stores the PK-sets of values in the first levelt ¢fee-dimensional queries, and multi-
dimensional queries connected with ‘OR’, the order of valiethe PK-set is not a matter of importance, thus, any

25

Table C.3: A comparison of second-level ADSs for storinggls table. Proof size and verification time are given for
one-dimensional queriesdenotes the number of searchable columns tatdws the number of records in the first level.

Accumulator Authenticated hash table

Storage 2N+ (s—1)(2|Ci| +2N) 2N+ (s—1)(2|IGi| +N)
Proof size 2log|Ci| +t+2tN/|Ci| 2log|Ci| +t+2t «N/|G]|
Verification time t(log|Gi| +N/|Gi]) t(log|Gi| +N/|Gi|)
Update time logN + (s—1)(log|Ci| +N/|Ci]) | logN+ (s—1)(log|Ci|+N/|G])

Authenticated skip list
Storage 2N+ (s—1)(2|Ci| +2N)
Proof size 2log|Ci| +t +tN/|G]
Verification time t(log|Ci| +2N/|Ci|)
Update time logN + (s—1)(log|Ci| +logN/|Ci|) = slogN

ADS can be used with time/space trade-offs discussed bdlbe.second-level ADSs of multi-dimensional queries
connected with ‘AND’ should be compared to generate effigieaofs, hence, aarderedADS should be employed.

Accumulator. For each distinct value in a column, an accumulated valaensputed using all values in its PK-
set. For each PK value, a witness is computed which provéd thelongs to the specified PK-set. If we need to select
all PK values, the second-level proof is essentially emptyto select a subset of the PK values (mostly required for
‘AND"), the witnesses of the selected PK values are requingike sent to the client.

For each distinct value in the first-level ADS/|Ci| PK values and witnesses should be computed and stored,
on average, wherH is the total number of records in the table. In totdCiP+ |Ci| * N/|Ci| = 2|Ci| + N (which is
O(|Ci| + N)) storage is required (including thé| space for the first-level ADS). A proof for each value is made
up of two parts, one for the first-level ADS (e.g., for autheaied skip list, a path from the leaf up to the root,
which isO(log|Ci|)), and the other is the accumulated value along with all \sin¢he PK-set, which isl/|Ci| (the
accumulated value is already included in the hash valuedtat the corresponding leaf of the first-level ADS). The
client herself can check validity of the PK-set against tbeumulated value. Therefore, for a result set of sjzbe
asymptotic size ofowill be O(log|Ci|) + 2t ~ O(log|Ci| +t).

The main problem with the accumulator is the cost of updaith @ach update, all withesses should be updated
using costly operations (e.g., modular exponentiation).

Authenticated hash table This is a sublinear membership scheme with constant quetyarification time,
making it an interesting scheme for clients with resourgsstrained devices. It is a good choice if the data is static.
For a leaf node storing;, we put the PK-set of; in an authenticated hash table, and store its digest at ¥e¢ le
above. On averag®|/|Ci| PK values linked to each leaf node; therefore, we req@i{i€i| + (1+ €)N/|Ci| % |Ci|) =
O(|Gi|+ (14 &)N)) = O(|Gi| + N) storage in total (including th®(|Ci|) space for the first-level ADS). Here,is a
constant. The first-level ADS proof is the same, and the emtgiroof sizes of the authenticated hash tab@4
makes the proofO(log|Ci|) +t) for t records in the result set. Hash operations are also muagr fdstn modular
exponentiations of the accumulator.

Merkle tree or authenticated 2-3 tree or authenticated skiplist. These are logarithmic membership schemes
with logarithmic height and proof size. The way the secamgel schemes are modified, or the proofs are generated,
are the same as for the first-level.

Each node requiress 2(N/|Ci|) storage to store the PK-set, thereforéCiP+ 2|Ci| « N/|Ci| = 2(|CGi| + N) =
O(|Ci| + N) storage is required to store a column. The proof size and fonene record are bott(log|Ci| +
log(N/|Ci])) = O(logN), and forr =tN/|C;| records are bot®(log|Ci|+r).

A comparison of ODB construction via various ADS schemesivergin TableC.3, where the first level is a
logarithmic ordered ADS and the second levels are shownenahle. Note, however, that the unit operations in the
accumulator are more costly than those in the others. It stibat using a logarithmic ADS such as an authenticated
skip list at both levels is the efficient choice leadingXdog|Ci| +r) proof size and time for = tN/|C;| records, and
O(logN) update time for one record. Other alternatives can be chreggmding the requirements of applications, such
as the database being static or dynamic.

26

