
1

Locality Aware Skip Graph
Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, and Öznur Özkasap

KOC University, Department of Computer Engineering
Istanbul, Turkey

{yhassanzadeh13, akupcu, oozkasap}@ku.edu.tr

Abstract—As a DHT-based distributed data structure, Skip
Graph plays a key role in the P2P cloud storage, distributed
online social networks, search engines and other DHT-based
applications. So far, the traditional identifier assignment algo-
rithms do not consider the Skip Graph node’s locations. Since
in the Skip Graph nodes are connected together based on
their identifiers, neglecting the nodes locality in the identifiers
assignment results in high end-to-end latency in the overlay
network which negatively affects the performance of the system.
In this paper, we proposed a method to assign the Skip Graph
nodes identifier’s considering their location information and make
the nodes locality aware. In the proposed dynamic and fully
decentralized algorithm called DPAD, instead of assigning the
peer’s identifier uniformly at random, a locality aware identifier
will be assigned to the nodes at their arrival time to the
system based on their distances to some super nodes named
Landmarks. Considering the locality awareness as the similarity
of the distances between the nodes in the overlay and underlay
network, the performance evaluation of the DPAD algorithm
compare to the best known static and dynamic algorithms results
in about 82% improvement in the locality awareness of the node’s
identifier and about 40% improvement in the search query end-
to-end latency.

Keywords—Huffman algorithm, Euclidean distance, Skip Graph,
Locality Awareness, P2P systems, Hop-to-hop latency, End-to-end
latency

I. INTRODUCTION

Skip Graph [1] is a distributed data structure that stores data
using {key, value} pairs. Data retrieval is possible by using
the key associated with the specific data item. Scalability [2],
fault tolerance, fast searching, correctness under concurrency
and load balancing [3] make Skip Graph a suitable underlying
routing infrastructure for the P2P cloud storage applications
[4][5]. In such applications, there exist some clients and
servers. Client owns the data item and server is one of the
nodes in the system that stores that data item. Client finds the
suitable server via a search in the Skip Graph. It then sends its
data to to the server for the upcoming saving processes. The
server will store the data item on behalf of the client. Also, the
Skip Graph’s ability to store and retrieve a data item is very
similar to the Distributed Hash Table (DHT) [6]. This makes
the Skip Graph to be considered as the DHT alternative in
many of DHT’s applications such as P2P storage systems [7]
[8], P2P online social networks [9] and P2P search engines
[10].

In the Skip Graph, each node has a unique name id and nu-
merical id associated with itself. The nodes will be connected
together based on their name ids in multiple levels. The more

two nodes have common prefix bits in their name ids, they
will connected to each other in the more levels of Skip Graph.
In a Skip Graph, the most common search query is to find
the node with the specific numerical id which is called Search
by Numerical ID. The Skip Graph with the total number of
N nodes, could perform a search (by numerical id) query by
traversing O(logN) hops on the average.

The performance of a Skip Graph is measured by its
query processing and response time. Since the most common
query of a Skip Graph is the Search by Numerical ID, the
average end-to-end latency (the latency between the source
and destination of a query) [11] of the search by numerical
id would be considered as the main performance metric of a
Skip Graph. The Skip Graph topology is determined based on
the name ids of the nodes. Therefore the network paths in the
underlying Skip Graph infrastructure heavily influenced by the
name id assignment strategy. So far, the node’s name id in the
Skip Graph are chosen uniformly at random from an identifier
space. This makes the underlying network path between two
hops to be chosen uniformly at random. In such systems, there
would be a huge difference between the underlying network
paths in the Skip Graph infrastructure and the overlay network
paths in reality. The average hop-to-hop latency (the latency
between two consecutive hops) could increase and hugely
affect the average end-to-end latency per search query and
therefore makes the whole system inefficient in the terms of
query processing and response time.

One solution to improve the latency problem in the Skip
Graph is to make it locality aware such that the node’s iden-
tifiers reflect their overlying network’s location information.
As much as two nodes are closer to each other in the overlay
network, their name id would be much more similar to each
other. Therefore in the Skip Graph locality awareness will be
defined as assigning name ids to the nodes such that the more
two nodes are close to each other, the more common prefix
they would have in their name ids.

As described in the beginning of the introduction the Skip
Graph could be used instead of DHT in many of DHT-based
applications. Therefore, by making the Skip Graph locality
aware and optimizing the end-to-end latency in its search
queries, we will also optimize the query processing and
response time in many of such applications. Using a locality
aware Skip Graph instead of a DHT will also enable the
DHT-based storage system to perform the data replications
based on the location of the peers. Contrary to DHT, in
the Skip Graph each node has a name id alongside with its
traditional key (numerical id). Therefore, when the name ids

 This paper has been accepted for publication by IEEE under the copyright notion of 978-1-4673-7303-6/15 $31.00 © 2015 IEEE.
 The final authenticated version is available at: https://doi.org/10.1109/ICDCSW.2015.29

2

reflect the locality, the placement of the replicas could be
handle based on their location information.

In this paper, we did the following contributions:
• We proposed the first dynamic fully decentralized algo-

rithm (DPAD) to assign locality aware name ids to the
nodes of Skip Graph.

• We improved the end-to-end latency of the Skip Graph
search queries using our proposed DPAD name id as-
signment algorithm.

• We developed a simulation environment SkipSim for
simulating the name id assignment algorithms, look up
operations, fault tolerance etc. on the Skip Graph in both
centralize and decentralize manner.

• We redesigned the proposed identifier assignment al-
gorithms for DHT nodes to be compatible with the
Skip Graph features, simulated them in the SkipSim and
compared their performance with our DPAD algorithm.

• Our simulation results show that our DPAD algorithm
40% improves the end-to-end latency of the search
queries and performs about 82% better in preserving
the locality awareness of the Skip Graph nodes than
the previous best known dynamic, fully decentralized
counterparts.

In the rest of the paper, we first introduce the scheme of
Skip Graph along with its search by numerical id and problem
definition in Section II. In the Section III, we present DPAD
algorithm to provide locality aware identifiers for the nodes of
Skip Graph. We review the related works in the Section IV. In
Section V, we evaluate our algorithm performance with respect
to other similar algorithms. Finally we conclude in Section VI.

II. SKIP GRAPH

A. Construction
Skip graph could be considered as the distributed version of

the Skip List [12]. It offsets the drawbacks of the Skip List
like single point of failure [13], lack of redundancy [13] and
manifestation of hot spot [14].

Skip Graph [1] consist of sorted doubly-linked lists divided
by the levels (Figure 1). In addition to the numerical id as
in the the Skip List, each node in the Skip Graph also has a
name id which is a binary string. Nodes are sorted in the level
0 based on their numerical id (like the Skip List). In ith level
there would be at most 2i doubly-linked lists that are sorted in
the same order of the level 0 and each node participates only
in one of them, until the nodes are divided into singletons after
O(logN) levels on average, where N is the number of nodes.

In the ith level the nodes that are located in the same sub-
list would have at least i common bits prefix in their name ids.
For example in Figure 1 nodes with numerical ids 12 and 39
have 2 bits common prefix in their name ids, therefore they
will be in a same sorted doubly-linked sub-list in the levels 1
and 2. However, since nodes with the numerical ids 71 and 28
have only one bit common prefix, they only shared a sub-list
in the level 1.

Fig. 1: Searching for numerical id 71 starting at the node
with numerical id 28

B. Search by numercial ID

As a member of DHT based distributed data structure family,
Skip Graph supports the regular DHT operations like insertion
and get. In the Skip Graph the get(x) operation is defined as a
search for the address of the node that has x as its numerical
id [1]. This operation is defined as a Search By Numerical ID,
and is very similar to the searching in the Skip List, except that
in the Skip Graph each node could initiate a search. On the
contrary, in the Skip List, all the searches should be initiated by
the left top most node (start node). Skip Graph could perform
this operation with logarithmic time order on the average with
respect to the number of the nodes in the zero level.

Figure 1 shows an example of search for numerical id.
The search initiates by the node 28 for the node that has the
numerical id of 71. Since the search target 71 is greater than
the numerical id of the search initiator (28), the search in all
the levels with continue to the right side. Red arrows show the
procedure of the search step by step. In the beginning of the
search, at the level 2, there are two consecutive nodes with
numerical ids 28 and 93 that are less than and greater than
the search target (71) respectively. Therefore, the search will
continue one level down (level 1) with the node 28. In level
1, node 28 will find the search target after performing a linear
search.

Another example of searching for the numerical id is shown
in Figure 2. A node with the numerical id of 55 initiates a
search for the node with numerical id of 14. In the case that
the target numerical id does not exist in the Skip Graph (like
this example which a node with numerical id of 14 does not
exist) algorithm returns the node with the numerical id that is
the greatest node in the system that is less than the search target
(12 in this case). The search starts at the topmost level (2) by
the initiator of the search (55 in this example). Since the search
target (14) is less than the initiator, in all the lower levels the
linear search will continue to the left direction. In the level 2,
since 55 has no left neighbor and hence it could not perform
the linear search, the search will switch to the level one. In
that level, the two consecutive elements (one greater than the
search target and one less) will be found immediately by just
checking the left neighbor of 55 (node with the numerical id
39). Therefore the search will continue at the lower level (0)

3

with the node that has the smaller numerical id (39). In the
level 0, 39 will perform a linear search for 14 and it will reach
the node with numerical id 12. At this point the search will
be terminated. Since we reached to an element that is smaller
than the search target, continuing the linear search will make
no sense any more and node with the numerical id of 12 will
be returned by the algorithm as the result of the search.

Fig. 2: Searching for numerical id 14 starting at the node
with numerical id 55

III. DYNAMIC PREFIX AVERAGE DISTANCE (DPAD)
ALGORITHM

In our proposed Dynamic Prefix Average Distance (DPAD)
algorithm, with N nodes in the system, we need to have at
least logN landmarks. Landmarks are some super peers in the
system that are placed according to the expected density of the
nodes in the system. To obtain a nameID for a single node P ,
this algorithm will receive two arrays as the input: Distance
and Average both with the size of K which is corresponds to
the number of the landmarks in the system. The ith element
of the Distance array is the distance of node P to the ith

landmark, whereas the ith element of the Average array is the
average distance of all the present nodes in the system to the
ith landmark.

In the DPAD algorithm each landmark in the system has a
dynamic prefix that is determined before any node arrives to
the system. In order to consider the density by employing the
Huffman algorithm on the landmarks.

To generate the Huffman prefixes for the landmarks, DPAD
first finds the landmark that has the minimum total distances
to all other landmarks. This landmark considered as the most
dense landmark in the system. DPAD then uses the distance of
each landmark to that most dense landmark as its weight for
the Huffman algorithm. By running the Huffman algorithm,
the prefix of landmarks will be determined.

Algorithm III.1 shows the DPAD method in more details.
In the beginning of the algorithm, the closest landmark to the
node P will be found and the name id of the node P will
have the prefix of its closest landmark (Algorithm III.1 line 1).
DPAD then compares the each element of Distance array with
the corresponding element of the Average array and assigns the
nameID of that node based on that element (lines 2-6). Then
it will update the Average matrix with the Distance array (line
7). Here, the update is to compute the new average distance of

all to all the landmarks including the Distance vector of node
P .

There may already exist a node in the system with the same
name id that the DPAD algorithm wants to assign to the node
P . This situation occurs if each member of Distance array of
that node and node P be in the same situation with respect to
the corresponding element in the Average array at the time that
their name ids was going to be assigned. In order to handle
this situation, DPAD algorithm checks to see that whether the
name id it generates is already assigned to another node or not.
(line 8) If the generated nameID has been already assigned,
the algorithm tries to find the closest available name id to
the generated nameID (line 9). DPAD will do this by finding
the closest available leaf of the name id tree to the generated
nameID. The name id tree is a binary tree with a null string
as the root. Each right child of a node has the name id of its
parent extended with a one bit and each left child of a node
has the name id of its parent extended with a zero bit.

Algorithm III.1: Dynamic Prefix Average Distance
(DPAD)

Input: array Distance, array Average
Output: string nameID, array Average

1 nameID = closestLandmarkPrefix(Distance); //Finding the
closest landmark to the node P

2 for i=0; i < NumberOfLandmarks; i++ do
3 if Distance[i]>Average[i] then
4 nameID = nameID + 0;
5 else
6 nameID = nameID + 1;
7 Update(Distance, Average); if nameID is already

assigned to another node then
8 return (nextAvailable(nameID), Average);
9 else

10 return (nameID, Average);

DPAD is a dynamic algorithm, it will generate a name id
for each new arrival node based on the current situation of the
system. Although by using the DPAD algorithm, the maximum
size of name ids in the system may increase, in order to
preserve the logarithmic behavior of Skip Graph in responding
the search queries, the number of the levels in the skip graph
will not be changed. Therefore, in a graph with 6 levels, two
nodes may have more than 6 bits common prefixes but they
will be in a same list up to the 6th level.

IV. RELATED WORKS

So far, several approaches have been proposed to assign the
node identifiers in a distributed data structure. Almost all the
methods have been designed for the distributed hash tables
(DHTs) and there was no specific method for the case of Skip
Graph. We divided the identifier assignment strategies into two
classes: Dynamic algorithms and Static algorithms.

A. Dynamic Algorithms
In this class of algorithms, the identifer of a new node could

be assigned at the time node arrives to the system. LAND

4

[15] chooses the identifiers of the DHT nodes uniformly at
random. In LDHT [16] the DHT identifiers were considered as
a conjunction of two independent binary strings: the first part is
a prefix containing the location information of the nodes (ASN
[17]), while the second part is completely chosen uniformly at
random.

Zhou et al [18] proposed the employing of hierarchical
address. The hierarchy consist of region, sub region, leaf region
and a random part. In this method, the name ids have dynamic
length. The more an area is crowded, the longer name ids its
related nodes will have.

Freedman et al [19], experimentally showed that IP prefixes
would not reflect the relation between the location of the peers.
There are several example of the peers with at least 21 bits
mask which are about 1000 miles away from each other while
according to their IP prefixes, they would assumed to be close
neighbors.

B. Static Algorithms
Static algorithms need the locality information of all the

nodes in the system before generating the name ids. Therefore,
in this class of algorithms, all the nodes should be present and
the total node number of the system should be determined.
Then the algorithm could generate the identifiers of the nodes.
Hence, static algorithms could not assign the name ids upon
the arrival of a new node. For each new node that joins the
system, the static algorithm should be run and assign new name
ids to all the nodes by considering the new relations between
the location of new node and other existing nodes.

LMDS [20] does not provide the locality-based name ids in
the desired format of the skip graph. On the contrary to the
skip graph which the name ids are the string of binary digits
containing the locality information as their common prefix,
the outcome of this algorithm is an integer which could not
be considered as the name id of the skip graph by itself and
needs couple of extra processes.

In [21], several approaches were discussed based on MDS
behavior to assign some kinds of identifiers to some points.
Instead of choosing landmarks and positioning all the nodes
with respect to the landmarks, in PMDS some pivots will
be selected from the ordinary nodes and the points will be
positioned with respect to each other. The algorithm should
be executed per each new pivot and also for each new arrival
node. High dimensional scaling (HDS) [21] selects K nodes
and measures the distance of the other nodes to these K nodes.
This distances would provide a K-dimensional coordination.
Final coordination would be calculated using the adjacency
matrix.

Allan et al [22] proposed a method based on LMDS to
convert the physical coordination of the nodes to the network
coordination such that the Euclidean distance between each
two nodes in the network reflects the latency. Authors also
used Hilbert Curve to improve the efficiency of LMDS in very
dense networks, for example in a picture file which represents
a graph of million pixels. To reduce the effect of the noise on
LMDS in the very large networks, Lee et al [23] also suggested
to divide the input into L parts, run LMDS on each part and

combine the results, instead of run the LMDS on the whole
input.

In Geo-Peer [24] the authors used Delaunay triangulate [25]
based on the Voroni diagram [26] in order to generate a locality
aware P2P system such that each peer is connected to its
closest neighbor. In this method they used several message
exchange steps in order to provide a Delaunay triangle be-
tween each 3 neighbors. For each new node several messaged
will be exchanged in the system for the neighbor discovery,
network maintenance and Delaunay triangulation. This method
has some advantages and disadvantages as: a node will be
connected to its closest neighbors, the approach is completely
P2P and routing would be efficient. However, it would not
generate locality aware identifiers. Considering the locality
aware identifier assignment to each node, the maximum degree
of each node (number of the links it has to its neighbors) is
not static in this method and is related to the geographical
location of the node. By employing this method in the Skip
Graph, some nodes may have more than O(log n) links that is
in contrast to the constraint of the Skip Graph and will make
the search query inefficient.

Table I shows a more detailed comparison between the
identifier assignment strategies in DHT-based data structures
and our proposed dynamic DPAD algorithm. One criteria to
compare different methods is is decentralization, which is
”Full” if all the peers could perform the identifier assign-
ment and is ”Hybrid” if only some super peers (for example
landmarks) could assign the node identifiers. For the case of
locality awareness a method is ”Full” if the nodes identifier
only contains their location information and is ”Hybrid” if in
addition to the location information, the nodes identifier also
contains a random part.

V. SIMULATION AND RESULTS

A. Simulation Environment: SkipSim
We designed and implemented a simulation environment

named SkipSim for simulating the proposed algorithms on the
Skip Graph and evaluating their performance in the case of
preserving the locality awareness and search querie’s end-to-
end latency. SkipSim is able to generate the random topologies
based on the system criteria.

In the SkipSim, the existence probability of the nodes in
each point is proportional to their positioning with respect
to the landmark points. Assuming nodes will appear near
to the landmarks with higher probability, Equation 1 shows
the chance of each point regarding to each landmark. In this
equation, chanceij is the chance of ith point in the screen
to be selected as a node location with respect to the jth

landmark and dij is the distance between them. maxDistance
is the maximum possible distance between two nodes in the
SkipSim (The screen diameter). In the Equation 2 chancei is
the sum of all the ith point’s chances with respect to all the
K landmarks in the system. The probability distribution of the
nodes is obtained by the Equation 3. In this equation pi is the
probability that a node arrives at the point i in the screen and
n∑

j=1

chancej is the sum of all the points chance in the screen.

5

Method Behavior Decentralize Locality Awareness

LAND[15] Dynamic Full No

LDHT[16] Dynamic Hybrid Hybrid

Hierarchical assignment[18] Dynamic Hybrid Hybrid

LMDS family[20][21][22] Static Hybrid Full

Dynamic Prefix Average Distance (DPAD) Dynamic Full Full

TABLE I: Comparison between various methods of identifier assignment

We generated 100 random topologies (each with 64 nodes
and 6 landmarks) based on the described distribution and
evaluated each algorithm based on them.

chanceij = 1− dij

maxDistance (1)

chancei =
K∑
j=1

chanceij (2)

pi = chancei
n∑

j=1

chancej

(3)

B. Related algorithms implementation

We implemented the related proposed algorithms to compare
their performance in the case of locality awareness and query
efficiency with our proposed DPAD algorithm. The implemen-
tation details of these algorithms listed as follows:

1) LDHT: In this algorithm implementation, the name id
of each node is its closest landmark prefix following with a
random sub-string. In this implementation, we assigned a fix
prefix to each landmark and assume each landmark defines a
specific ASN by that prefix. All the nodes around a landmark
will then belong to the same ASN group.

2) Hierarchical Assignment: In order to implement this
algorithm, we employed the same strategy of generating Huff-
man prefixes for the landmarks as what we did in the DPAD
algorithm. The second part of the name ids would be chosen
uniformly at random from the available name ids. By this
implementation the density of the landmarks will determine
the regions and sub-regions. The more an area is crowded by
the landmarks, Huffman algorithm would generate more sub-
regions by assigning similar prefix to that landmarks.

3) LMDS: Having N nodes and K landmarks in the sys-
tem a N × K Distance matrix will be generated such that
Distance[i][j] is the network distance of the ith node to the
jth landmark. LMDS will be run on the Distance matrix and
will output a single value for each node. Nodes will be ranked
based on their LMDS value from zero to N−1 in the ascending
or descending order. The name id of each node would be the
conversion of its rank to the binary considering the system size
of name ids.

4) Dynamic Prefic LMDS (DPLMDS): We designed and im-
plemented this static algorithm by combining the Hierarchical
assignment and LMDS algorithms together in order to obtain
another static algorithm to compare with our proposed DPAD
algorithm. In the DPLMDS algorithm, the name id of each
node consist of two parts: The Huffman prefix of the closest
landmark in the system to that node followed by the output of
the LMDS algorithm as described above.

C. Results

1) Locality Awareness: To evaluate each name id assign-
ment algorithm we ran the algorithm for that 100 saved random
topologies. For each topology, after assigning the name ids to
all the nodes, average distance of each node to all its neighbors
in the underlying network was computed. Then the average
distance of all the nodes in the system regarding to their
underlying network’s neighbors calculated. Finally, the average
distance of each node to all its underlying network’s neighbors
in 100 random topologies was reported as the performance
metric of each algorithm regarding to the locality awareness.
Figure 3 shows the average distance of each node to its
look up table neighbors in each algorithm. In this figure
the x-axis corresponds to the algorithms whereas the y-axis
shows the average distance. As it is shown in this figure,
our proposed dynamic, fully decentralized DPAD algorithm
has the same performance as the static DPLMDS algorithm
and improves the locality awareness with the gain of about
24% in comparison to the hybrid decentralized Hierarchical
approach and with the gain of about 82% in comparison to
the random assignment (LAND) which was the only dynamic,
fully decentralized algorithm before DPAD.

Figure 4 shows the average distances between all pairs of
the nodes in the system based on their name ids common
prefix after employing the DPAD algorithm. As this figure
shows, the more two nodes are closer to each other, the more
common prefix they would have in their name id.

2) End-to-end latency in the search query: In order to
evaluate the effect of the name id assignment algorithms on the
end-to-end latency of the search query, we ran 1000 random
search by numerical id queries originated at the random nodes
per each topology for 100 random topologies. By modeling the
overlying network RTT with the physical distances between
the nodes, we measured the total distance that a packet travels
on the average to perform a search by numerical id for 1000
random queries as the performance metric of each algorithm.

6

100

120

140

160

180

200

220

240

260

Algorithms

A
v
e
ra

g
e
 D

is
ta

n
c
e

LAND LMDS Hierarchical DPADDPLMDSLDHT

Fig. 3: Average distance of the nodes to their look-up table’s neighbors in the name id assignment algorithms

−2 0 2 4 6 8 10
0

50

100

150

200

250

300

350

Number of common bits

A
v
e
ra

g
e
 D

is
ta

n
c
e

Fig. 4: Average distance between the nodes with different common prefix in the Dynamic Prefix Average Distance (DPAD)
algorithm

600

700

800

900

1000

1100

1200

A
v
e
ra

g
e
 L

a
te

n
c
y

Algorithms
LAND LMDS LDHT DPADHierarchical DPLMDS

Fig. 5: Effect of name id assignment algorithms on the end-to-end latency of the search by numerical id

7

Figure 5 shows the performance of name id assignment algo-
rithms on the end-to-end latency of the search by numerical
id. The x-axis corresponds to the algorithms and y-axis shows
the average end-to-end latency.

As Figure 5 shows, our proposed dynamic, fully decen-
tralized DPAD algorithm has the similar performance to the
static DPLMDS in the case of improving the search query
end-to-end latency. In comparison to the random assignment
algorithm (LAND) which was the only dynamic and fully
decentralized algorithm before ours, DPAD improves the end-
to-end latency with the gain of 40%. Although in comparison
to the hybrid decentralized Hierarchical assignment of the
identifiers, DPAD improves the end-to-end latency with the
gain of 6%, the main difference between DPAD and Hierarchi-
cal assignment arias in the case of their decentralize behavior.
In contrast to the Hierarchical assignment, DPAD assigns the
nodes identifier in a fully decentralized manner. In DPAD
all the existing peers in the system could assign a locality
aware name id for a new node, whereas in the Hierarchical
assignment only some super peers who knows the hierarchical
division in the system could perform the assignment.

VI. CONCLUSION

In this paper with the aim of reducing the end-to-end latency
in the search queries, we proposed a novel algorithm to make
the Skip Graph nodes locality aware. We addressed the locality
awareness problem to the method in which the Skip Graph
node’s name ids are assigned. The proposed algorithm called
Dynamic Prefix Average Distance (DPAD) is a dynamic and
fully decentralized algorithm which assigns the identifiers of
the Skip Graph node’s based on their location information at
their arrival time to the Skip Graph. DPAD which is so far the
only proposed locality aware identifier assignment algorithm
for the Skip Graph, assigns the name ids by analysing the
distance of the nodes with respect to some super nodes in the
system called landmarks.

In order to analyze the performance of DPAD algorithm
with other algorithms we implemented a simulator called
SkipSim. In the SkipSim we analysed the performance of the
DPAD algorithm with other traditional identifier assignment
algorithms in the terms of nodes locality awareness and end-
to-end latency of the search queries.

In the SkipSim we considered the physical distance between
each two nodes as their RTT latency and measured the end-to-
end latency of search by numerical id as the performance of
each algorithm in the case of search queries. We also consid-
ered the average RTT latency of each node to its neighbors in
the underlay network as the locality awareness metric for each
algorithm. Comparing to the other proposed algorithms, our
proposed DPAD algorithm improves the locality awareness of
the Skip Graph nodes with the gain of about 82% and end-to-
end latency of the search query with the gain of about 40%
considering the dynamic and fully decentralized behaviors.

REFERENCES

[1] J. Aspnes and G. Shah, “Skip graphs,” ACM TALG, vol. 3, no. 4, 2007.

[2] A. Tanenbaum and M. Van Steen, Distributed systems. Pearson Prentice
Hall, 2007.

[3] S. Batra and A. Singh, “A short survey of advantages and applications
of skip graphs,” IJSCE, vol. 3, no. 5, 2013.

[4] E. Udoh, Cloud, grid and high performance computing: emerging
applications. Information Science Reference, 2011.

[5] T. Shabeera, P. Chandran, and S. Kumar, “Authenticated and persistent
skip graph: a data structure for cloud based data-centric applications,” in
International Conference on Advances in Computing, Communications
and Informatics, ACM, 2012.

[6] W. Galuba and S. Girdzijauskas, “Distributed hash table,” in Encyclo-
pedia of Database Systems, pp. 903–904, Springer, 2009.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” ACM SIGCOMM, vol. 31, no. 4, pp. 149–160, 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A
scalable content-addressable network, vol. 31. ACM, 2001.

[9] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2p so-
cial networking: early experiences and insights,” in 2nd ACM EuroSys,
pp. 46–52, 2009.

[10] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of P2P systems, vol. 6, pp. 68–72, 2003.

[11] B. Van Schewick, Internet architecture and innovation. MIT Press,
2010.

[12] M. T. Goodrich, R. Tamassia, and A. Schwerin, “Implementation of
an authenticated dictionary with skip lists and commutative hashing,”
in DARPA Information Survivability Conference & Exposition II,
2001. DISCEX’01. Proceedings, vol. 2, pp. 68–82, IEEE.

[13] M. Van Steen and A. Tanenbaum, “Distributed systems principles and
paradigms,” Prentice Hall,, vol. 1, no. 2, 2003.

[14] T. Crain, V. Gramoli, and M. Raynal, “No hot spot non-blocking skip
list,” in 33rd ICDCS 2013, pp. 196–205, IEEE.

[15] I. Abraham, D. Malkhi, and O. Dobzinski, “Land: Locality aware
networks for distributed hash tables,” tech. rep., Tech. Rep. TR 2003-75,
Leibnitz Center, The Hebrew University.

[16] W. Wu, Y. Chen, X. Zhang, X. Shi, L. Cong, B. Deng, and X. Li, “Ldht:
locality-aware distributed hash tables,” in IEEE ICOIN 2008, pp. 1–5.

[17] G. Huston, “Exploring autonomous system numbers,” The Internet
Protocol Journal, vol. 9, no. 1, pp. 2–23, 2006.

[18] S. Zhou, G. R. Ganger, and P. A. Steenkiste, “Location-based node ids:
Enabling explicit locality in dhts,” Technical Report, Carnegie Mellon
University, 2003.

[19] M. J. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan,
“Geographic locality of ip prefixes,” in 5th ACM SIGCOMM, pp. 13–13,
USENIX Association, 2005.

[20] V. De Silva and J. B. Tenenbaum, “Sparse multidimensional scaling
using landmark points,” tech. rep., Technical report, Stanford University,
2004.

[21] U. Brandes and C. Pich, “Eigensolver methods for progressive mul-
tidimensional scaling of large data,” in Graph Drawing, pp. 42–53,
Springer, 2007.

[22] A. Allan, R. Humphrey, and G. D. Fatta, “Non-euclidean internet
coordinates embedding,” in 13th ICDMW, 2013, IEEE.

[23] S. Lee and S. Choi, “Landmark mds ensemble,” Pattern Recognition,
vol. 42, no. 9, pp. 2045–2053, 2009.

[24] F. Araújo and L. Rodrigues, “Geopeer: A location-aware peer-to-peer
system,” in 3rd IEEE NCA 2004.

[25] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a de-
launay triangulation,” International Journal of Computer & Information
Sciences, vol. 9, no. 3, pp. 219–242, 1980.

[26] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geo-
metric data structure,” ACM CSUR, vol. 23, no. 3, pp. 345–405, 1991.

