This paper has been accepted for publication by IEEE under the copyright notion of 978-1-5090-5263-9/16 $31.00 © 2017 IEEE.

The final authenticated version is available at: https://10.1109/SmartCloud.2016.45

Awake: decentralized and availability aware
replication for P2P cloud storage

Yahya Hassanzadeh-Nazarabadi, Alptekin Kiip¢ii and Oznur Ozkasap
Department of Computer Engineering, Ko¢ University, Istanbul, Turkey
{yhassanzadeh13, akupcu, oozkasap} @ku.edu.tr

Abstract—The traditional decentralized availability-based
replication algorithms suffer from high dependence on the under-
lying system’s churn behavior, randomness in replica selection,
and the inability of maximizing the replicas availability. These
drawbacks result in poor data availability especially in low avail-
able systems as well as where the churn behavior is mispredicted.
In this paper, we propose dynamic, fully decentralized availability
aware algorithm named Awake, with the goal of maximizing the
availability of replicas. Compared to the existing solutions, Awake
always provides the maximum availability of replicas regardless
of the underlying system’s churn behavior. By employing Awake,
a data owner can select its replicas only based on the aggregated
availability information of nodes obtained in a fully decentralized
manner with asymptotically the same message overhead as the
communication complexity of the underlying system. Awake has
linear space complexity in the number of registered users to the
system. Our extensive simulation results show that in comparison
to the best existing decentralized solutions, regardless of the
underlying churn model of the system, Awake improves the
availability of replicas with a gain of about 21%. Likewise, Awake
is scalable by showing the same performance independent of the
system size. Employing Awake in a system with 1 million nodes
has the expected space consumption of 25 megabytes on each
node as well as the expected communication overhead of 480
kilobytes per message.

Index Terms—P2P cloud storage, replication, availability
awareness, churn.

I. INTRODUCTION

Peer-to-peer (P2P) cloud storages consist of a set of nodes
where a node can be both a data owner and a data requester
simultaneously. Data owner possesses a set of data objects and
aims to share them with a group of authorized nodes called
data requester nodes. In P2P cloud storages nodes oscillate
between online and offline periods. A node arrives at the
system and starts an online state. After a while, it terminates
its session and departs from the system or fails. A departed or
failed node may come back at another time to the system or
may leave the system forever. This arrival and departure of the
nodes to and from the P2P system are called churn [1]. Churn
negatively affects the data availability in a P2P cloud storage.
When a data owner goes offline or fails, its data objects would
no longer be available to the data requesters.

To remedy the data availability problem of P2P cloud
storages under churn, the data owner makes copies of its data
objects on the other nodes of the system. Those nodes are
called replicas and the operation of determining replicas is
called replication [2], [3]. After replication is done, in case

data owner becomes unavailable, the data requesters can utilize
the replicas.

The traditional decentralized availability-based replication
algorithms aim at improving the performance of the P2P cloud
storage by either immediately resolving replica’s failure or
by providing an average number of available replicas for a
long period of time e.g., providing an average number of
three available replicas for one month. Probing the replicas
and determining a new replica for each failure [4]-[8], ran-
domized replication [9], cluster-based replication [10]-[13],
and correlation-based replication [14] are the most common
decentralized availability-based replication methods.

All of the decentralized availability-based replication al-
gorithms employ some kind of randomness for replica se-
lection. Employing randomness prevents the algorithms to
purely consider the availability patterns of nodes in the replica
selection procedure. This leads the system to cases where
only a few number of replicas or even no replica is available.
Poor availability of replicas results in performance degradation
of the P2P cloud storage in the terms of data availability.
Likewise, all of the decentralized availability-based existing
solutions make explicit assumptions about the underlying
churn behavior of the system for replica selection. This causes
their performance to be extremely narrowed by the underlying
churn behavior of the system. In the case where the churn
behavior of the system is mispredicted or changes over the
time, employing the existing solutions results in poor data
availability.

To improve the data availability of P2P cloud storages under
churn, we propose a dynamic, fully decentralized, churn
behavior independent, and availability aware replication
algorithm named Awake. The availability aware replication
is defined as dividing a fixed size periodic time interval (FPTI)
into a set of identical time slots (7'S) and placing the replicas
such that the maximum availability of replicas during each T'S
is achieved. By employing Awake, a data owner can replicate
its data objects in a fully decentralized manner with the
availability awareness of the replication achieved. For instance,
considering FPTI as a day and TS as an hour, compared to
the best existing solutions our approach provides maximum
availability of replicas during each hour of the day.

Awake can be employed in any structured P2P cloud storage
given that the availability information of nodes is piggybacked
on the messages that they route or initiate. The size of message
overhead is asymptotically identical to the communication

complexity of the underlying structured P2P system. For in-
stance, employing Awake in a Distributed Hash Table (DHT)-
based [4] cloud storage with the capacity of N nodes that
have the communication complexity of O(log V), costs the
message overhead of size O(log N).

The contributions of this study are:

o We propose Awake: the first churn behavior indepen-
dent, dynamic, fully decentralized availability aware
replication algorithm for P2P cloud storages.

o Space complexity of Awake is linear in the number of
registered users to the system.

o Communication overhead of Awake is the same as the
communication complexity of the underlying P2P cloud
storage that Awake is applied on.

o We extended the SkipSim [15], [16], for simulating and
evaluating the availability-based replication algorithms.

o« We modeled the best known decentralized availability-
based replication algorithms on SkipSim and compared
with Awake.

o The simulation results show that on average regardless
of underlying churn behavior of the system, Awake
improves the availability of replicas with the gain of
about 21% in comparison to the best known decentralized
existing solutions.

o Awake is scalable in the sense that it shows the same
performance independent of the system size.

o Employing Awake in a system with 1 million nodes,
charges a space consumption of 25 megabytes on each
node and a communication overhead of 480 kilobytes on
each message.

The rest of the paper is organized as follows. Section II
presents the system characteristics that Awake can be applied
on. In Section III, our approach Awake is described in detail.
The related works and simulations setup are presented in
Sections IV and V, respectively. Performance results are
presented in Section VI, followed by conclusion in Section
VIIL.

II. PRELIMINARIES
A. System Architecture

Awake works on top of a structured P2P system such as
a DHT. In a structured P2P system, the overlay network is
based on a specific topology. In our view of a structured P2P
system, nodes just use the overlay network to efficiently search
for other nodes and data.

In a search operation, the node that initiates the operation
is named the initiator. The node or data object that an initiator
searches for is called search target. As a result of a search
operation, the address of the target node or address of the
node that owns the target data object is returned to the search
initiator. Once the search initiator receives the address of the
search target, it communicates the search target directly.

We consider a structured P2P cloud storage where each node
corresponds to a unique peer in the real world. There exist two
roles for each peer: data owner and data requester. Data owner

owns a set of data objects and data requester is the authorized
consumer of those objects. A peer can be both a data owner
as well as a data requester for other data owners.

B. Availability Information

1) Availability Vector: Availability pattern of a node is
represented by a vector of size S and is called the availability
vector. S is defined as the number of time slots and is equal
to £ 5;“1 . Availability vector of a node 4 is denoted by AV;]].
AV [t] represents the availability probability of the node i in
time slot ¢ of the FPTI. Node i computes its AV;[¢] by dividing
the total duration of its availability during time slot ¢ over
the number of times that FPTI has repeated up to the time
of computation. For example, consider a system with FPTI
equal to a day and TS equal to an hour which five days have
elapsed since the birth time of the system. In such a system,
S is equal to 24 and hence the availability vector of nodes is a
vector of size 24. AV;[t] is computed as the total duration that
node ¢ was available at hour ¢, over five days. For example, if
during the last five days the total availability duration of node
i during hour ¢ was 2.3 hours, AV;[t] = %2 = 0.46.

2) Availability Table: The availability table of a node is the
local availability view of it for the system. Availability table
of node i is represented as AT;][][] which is a two dimensional
array of size N x S. AT;[j][t] is the knowledge of the node 4
about the availability probability of the node j in time slot ¢
of FPTI.

A node piggybacks its id and availability vector on the
messages’ header that it routes or initiates. Upon receiving
a message to route or read, the receiver obtains the piggy-
backed availability vectors and updates its availability table
accordingly. Nodes are assumed to be honest in computing
and piggybacking their availability vectors as well as their
ids. To emphasize the recent availability behavior of node j
while considering its availability history, the node ¢ updates
AT;[4][t] using an exponential moving average mechanism.

Vi 0 <t<S§S

1
ATi[j]lt] = (1 = B) x AT;[j][t] + B x AVj[t] W

Equation 1 presents update procedure of node 7’s availability
table upon receiving a message that contains the availability
vector of node j. In this equation, the right side and left side
AT;[4][t] values are the (j,t) entry of node 4’s availability
table before and after the update, respectively. AVj]] is the
availability vector of node j and 0 < 8 < 1 is the effect
factor of amplifying the new availability probabilities over the
old ones in learning the value of AT;[j][t]. In this text, we
call 8 as the learning factor.

C. Churn Model

In a P2P cloud storage, a node oscillates between online
and offline states. In each online period, the node is available
for a certain while named the session length. Availability of a
node corresponds to its session length. As the session length
elapses, the node goes offline for a certain while that is called

Churn Model Distribution | SL A | SL k | Average SL (Hour) | DT A | DT k | Average DT(Hour) | Availability Ratio
High Available [17] Weibull 0.35 0.34 1.96 0.179 0.34 0.99 1.97
Moderate Available [17] Weibull 0.69 0.59 1.06 0.65 0.34 0.99 1.07
Low Available [18] Exponential | 0.118 — 8.42 0.017 — 58.32 0.14

TABLE I: Characteristics of the BitTorrent-based churn models used. SL and DT correspond to the session length and downtime distributions, respectively.

the downtime. After the downtime of the node is passed, the
node comes back to the system and this flow cycles.

We assume that the connectivity of the structured P2P rout-
ing infrastructure is churn resilient. The departure or failure
of a node results in connectivity disruption in the paths routed
from that node. This negatively affects the connectivity of the
whole system and yields failure in routing the transactions. To
overcome this problem, it is assumed that a node maintains and
frequently updates an alternative direct communication link
between its consecutive predecessors and successors. When
the node departs or is failed, its consecutive predecessors and
successors use the alternative direct communication to route
a query. Hence, although the churn negatively affects the data
objects availability of the system, it does not affect the system
connectivity.

For a churn model, we define the availability ratio as
the ratio of its session length over its downtime. Based on
the availability ratio, a churn model is high available if its
availability ratio is higher than one. A churn model is moderate
available if its availability ratio is around one. And a churn
model is low available if its availability ratio is less than one.

Session length and downtime distributions of the churn
model define the availability pattern of nodes. There are
several studies on the churn models, each considers a certain
system e.g. BitTorrent [17]-[20], Kad [17], Gnutella [17], [21],
eDonkey [14], Kademlia [22], and PlanetLab [7], [23].

Among the churn models we reviewed, the BitTorent-based
models are concrete, parametrically clear and consistent with
each other, and hence were selected to model our system. Table
I summarizes these churn models with their characteristics.
Where SL and DT correspond to the session length and down-
time distributions, respectively. These models either follow a
Weibull or an Exponential distribution.

1) Weibull-based Churn Model [17]: In a Weibull-based
churn model, the session length and downtime of nodes are
modeled with Weibull distributions. A Weibull distribution
is defined with two parameters: shape and scale. The shape
parameter affects the shape of the distribution and is denoted
by k. The scale parameter is denoted by A. A large scale
parameter results in the distribution to be less spread out and
more concentrated around its expected value. Considering the
random variable 7" as a representation of the session length (or
downtime), Equation 2 represents the Cumulative Distribution
Function (CDF) of the session length (or downtime) of a
system that follows the Weibull distribution. Also, Equations
3 and 4 represent the mean and variance of the corresponding
Weibull distribution, respectively. In those equations, I' is the
Gamma function. For a positive integer n greater than one,

I'(n) is defined as (n — 1)

PH(T < 1) = 1~ exp(~(5)") @)
BIT] = AxT(1+ 7) 3)
var(T) = A\? x r(1+%)—r2(1+%))

2) Exponential-based Churn Model [18]: In an
exponential-based churn model, the session length and
downtime of nodes follow exponential distributions. An
exponential distribution is specified with a rate parameter
(A). The rate parameter of the downtime and session length
distributions shows how often a node arrives at the system
or departs from the system, respectively. Considering random
variable T' as the session length (or downtime) of the nodes,
Equation 5 represents the CDF of the session length (or
downtime) of nodes in a system that follows the exponential
distribution. Likewise, the mean and variance of the random
variable 1" are shown in the Equations 6 and 7 respectively.

Pr(T <t)=1-—exp(—Xt) 5)
1
var(T) = 2 @)

III. AWAKE: AVAILABILITY-AWARE REPLICATION
A. Scenario

As a data owner joins the system, it starts searching for other
nodes as well as routing other nodes’ search queries. The data
owner sends its availability vector to other nodes by means
of piggybacking on the query messages it initiates or routes.
Likewise, the data owner obtains other nodes piggybacked
availability vectors from the messages it routes, and updates
its availability table accordingly. This is a learning phase as
the data owner learns about the availability behavior of the
system. The learning phase is common among all the existing
availability-based solutions. A large learning phase helps the
data owner to obtain a more accurate availability view from
the system. The data owner continues to this learning up to a
point which is called the replication time.

At the replication time, the data owner runs Awake by
giving its availability table as well as the authorized number
of replicas. As Awake terminates, it outsources the replica set
to the data owner and data owner replicates on the replica set.

B. Motivations and Challenges

In Awake, the main challenge is to move toward maximizing
the replica availability in a decentralized manner regardless of

the underlying churn behavior of the system. The main disad-
vantages of the existing decentralized solutions are considering
explicit assumptions about the underlying churn behavior of
the system (and hence strong dependency on it) as well as
employing randomness in replica selection. The hard parts
in designing Awake were to achieve a formal formulation of
availability aware replication that is refined from randomized
decisions and any assumption about the underlying churn
behavior of the system.

Awake is the first decentralized availability aware replica-
tion algorithm with mathematical objective, formulation, and
constraints. This formulation is completely free of including
any assumption about the underlying churn model of the
system. Heart of Awake is its ILP model of availability aware
replication which its correctness is self-explanatory based
on the nature of ILP models. Due to its ILP maximization
objective that is clearly bounded by the constraints, being free
of randomness, and being independent of underlying system’s
churn behavior, Awake is theoretically expected to outperform
the existing solutions. This claim is supported by the empirical
results.

C. Algorithm Overview

Awake is a dynamic fully decentralized availability aware
replication algorithm for the P2P cloud storages. By employ-
ing Awake, a data owner can determine its replicas without
the need for communicating with any special node as the
coordinator. Since Awake is an availability aware algorithm,
by employing it in a system, maximum replication availabil-
ity during each time slot is obtained. Maximum replication
availability corresponds to the maximum average number of
replicas which are available during each time slot. Replicating
data objects of a node in Awake does not necessarily mean
that the data objects are publicly available. Access control is
a separate problem that can be solved, for example, by means
of encrypting the data objects and delivering the keys to the
authorized parties. The authorized parties are called the data
requester nodes.

Data Owner’s Data Owner |Awake
Neighbor 1.AT[], R
2. Generating
ILP model
. 3. Solving LP
4.Replica Set| ~ .. ation
5.Replicating
on the
Replica Set

6.Backing up the
Replica set

Fig. 1: The interactions between the data owner, data owner’s neighbor and Awake.

Figure 1 illustrates the interactions between the data owner,
data owner’s neighbor, and Awake. As the input, Awake re-
ceives availability table of the data owner as well as authorized
number of replicas (Step 1). The authorized number of replicas

is called the replication degree and is represented by R.
Awake then models the availability aware replication as an
integer linear programming (ILP) (Step 2), solves the LP
relaxation of it (Step 3) and provides the replica set to the
data owner (Step 4). Data owner replicates its data objects on
the replica set provided by Awake (Step 5).

Data Replication vs. Replica Set Replication: The data
owner does the data replication based on the replica set that
is provided by Awake. However, in order to prevent the
unavailability of the replica set by failure or departure of the
data owner, similar to [24], the data owner makes a backup
of its replica set accompanied by an expiration time on its
neighbors in the underlying structured P2P (Step 6). This
procedure is called replica set replication. The expiration time
is defined as the time of next execution of Awake based on the
updated availability information of nodes. Likewise, the data
owner’s neighbors are the nodes which are directly connected
to the data owner in the structured P2P routing infrastructure.
The data owner is assumed to check its neighbors list fre-
quently and back up its replica set on the new neighbors.
It worth to note that Awake only provides the replica set
for data replication. While the replica set replication is done
independently of Awake as a fault tolerance approach.

When an intermediate node receives a search query request-
ing the replica set of a certain data owner, it checks whether
it possesses a valid replica set backup of that data owner. A
valid backup is the one that is not expired. If the intermediate
node has a valid backup, it responds to the search query on
behalf of the data owner by sending the replica set to the data
requester node. Otherwise, the intermediate node routes the
search query to the data owner via the next node.

D. Algorithm Description

1) Input and Qutput: Considering data owner j running
Awake, inputs of Awake are availability table of the data
owner, AT}[][], as well as the replication degree of the data
owner, R. The output of Awake is a binary vector Y with
the size N where N is the capacity of the system in terms
of nodes and is considered as a constant regardless of system
arrivals and departures. The capacity of system is defined as
the maximum number of users that can register to that system.
Although N is constant, new nodes can join the system, and
old nodes may depart permanently. However, the total number
of user registration to the system is assumed to be constant V.
If node ¢ is selected as a replica, Y; = 1, otherwise Y; = 0.

2) Generating and Solving the ILP model: Awake models
the availability aware replication as an ILP represented by
Equations 8-10. The only variable of this ILP is Y and
constants are N, R, and AT][].

S N
max » > Y x AT;[i][t] st (8)
=1 =
tN 1
Y Yi=R ©)
=1

Vi,1<i<N Y;e{0,1} (10)

a) The objective function (Equation 8): The objective
is to maximize the total availability of replicas over all the
time slots. Availability of replicas in a time slot is defined
as the summation of their availability probabilities from the
availability table of the data owner.

As represented by this equation, if node 7 is selected as a
replica (Y; = 1) it contributes to the availability of time slot ¢
with its availability probability in that time slot (AT} [i][t]). The
summation over IV represents the total availability of replicas
during time slot ¢ of FPTI. Subsequently, the summation over
S represents the total availability of replicas over all the time
slots.

As the total availability of replicas during each time slot is
non-negative, maximizing the total availability of replicas over
all the time slots implicitly results in the maximum availability
during each time slot as well.

b) The replication degree constraint (Equation 9): 1If
node ¢ is selected as a replica, Y; is set to one, otherwise
zero. Summing up the elements of Y vector hence results in
the replication degree. Equation 9 shows the constraint on the
replication degree.

¢) The authorized values for output variable (Equation
10): This constraint represents that each element of the Y
vector should be either one or zero which shows whether the
corresponding node is selected as a replica or not, respectively.

After Awake models the availability aware replication as an
ILP, it solves the LP relaxation of ILP and outsources the Y
vector to the data owner.

IV. RELATED WORKS

A. Reactive Replication

Reactive replication algorithms replicate regardless of avail-
ability patterns of the nodes. They react to a replica failure by
placing a new replica. In this class of algorithms, after an
initial replication is done, the replicas are periodically probed,
for example, every 12 hours. If a replica does not answer
the probe message in a certain while, it is presumed to be
failed. Failed replicas are substituted by newly placed ones [8].
Probing of replicas is done by the data owner, data requesters
or other replicas.

For a large number of replicas or small probing periods,
probing all the replicas is inefficient. To resolve this problem
while preserving the fairness, at each probing time a subset of
replicas is chosen uniformly at random and probed [4]-[7].

B. Proactive Replication

The goal of a proactive replication algorithm is to provide
an average availability of replicas for a long period of time.
For example, a proactive replication algorithm may provide
an average availability of 2 replicas at each hour for 3
months. A proactive replication algorithm is supposed to be
executed periodically to refresh the replica selection based on
the updated availability pattern of nodes up to that period.
In the previous example, the proactive replication algorithm
is expected to be executed every 3 months. Likewise, when
the availability behavior of replicas changes negatively and
degrades the system performance, the proactive replication is
supposed to be executed based on the new availability behavior
of nodes. There are several proactive replication algorithms
that depend on a specific churn behavior of the system:

1) Randomized Replication [9], [26]: In a randomized
replication algorithm, a number of nodes denoted by the
replication degree are selected as replicas uniformly at random.
Randomized replications perform well in the highly available
systems where the average availability of nodes is high.
Choosing replicas uniformly at random hence results in an
acceptable expected number of available replicas.

2) Cluster-Based Replication [10]-[14]: A cluster-based
replication algorithm divides the nodes based on their common
features such as time zone, load, and query rate into a
set of cliques. The algorithm then distributes the replication
degree among the cliques considering their availability pattern.
Cluster-based replication algorithms perform well in high and
moderate available systems.

3) Correlation-Based Replication [14], [25]: Correlation is
defined as the similarity between the availability patterns of the
nodes. The more two nodes are correlated with each other, the
more similarity they have in their availability behavior. In other
words, for a pair of highly correlated nodes, whenever one
node is available, with a high probability the other node would
be available as well. Similarly, two nodes that have reverse
availability patterns with respect to each other, are called anti-
correlated nodes. For a pair of anti-correlated nodes, when
one node is unavailable, with a high probability, the other one
is available. The correlation between two nodes is defined as
the dot product of their availability vectors. The higher the dot
product is, the higher two nodes are correlated with each other.
Likewise, a zero dot product shows a pair of anti-correlated
nodes.

The goal of a correlation-based replication algorithm is to
provide k-availability of replicas in the system. k-availability
is defined as guaranteeing the availability of at least k replicas
at any time in the system. To achieve this goal, a correlation-
based replication algorithm replicates on k pairs of anti-
correlated nodes. In this way, totally 2 x k replicas are selected.

Considering a pair of anti-correlated replicas, when one
replica is offline, the other one is available with a very
high probability. For each pair of anti-correlated replicas,
hence, always one replica is available. Having £ pairs of
anti-correlated replicas results in the availability of at least
k replicas at any time.

Strategy Behavior | Availability Aware | Churn Model Independent Objective
Probing [4]-[8] Reactive No No Resolving Failures
Randomized [9] Proactive No No Average Availability

Cluster-Based [10]-[13] Proactive No No Average Availability
Correlation-Based [25] Proactive No No Average Availability
Awake Proactive Yes Yes Maximum Availability

TABLE II: Comparison of various availability-based replication strategies

However, finding k pairs of anti-correlated nodes may
not be always feasible. Thus, empirically, a correlation-based
replication algorithm selects k pairs of nodes with the min-
imum correlation as a pair of replicas. For this reason, the
correlation-based replication algorithms are merely suitable
for the low available systems which experience a very low
pairwise correlation of nodes.

C. Comparison

Table II shows a comparison between various availability-
based replication strategies. As shown in this table, among the
availability-based replication algorithms, Awake is the only
availability aware one. Also, while the main objective of all
the proactive solutions is to provide an average availability
of replicas, Awake provides the maximum replication avail-
ability. Compared to the existing solutions, Awake is the only
algorithm that works independently of the underlying system’s
churn model. All of the replication algorithms listed in the
table are decentralized. Likewise, all of them are dynamic in
the sense that a data owner can replicate at any arbitrary time.

D. Algorithms used for comparison

Followings are the implementation details of the algorithms
that are selected for the sake of comparison with Awake.

1) Randomized Replication: The data owner pings nodes
repeatedly at random until it finds as many as available nodes
as the replication degree and replicates on them [9].

2) Cluster-Based Replication: The data owner performs a
k-mean clustering [27] of the nodes based on the availability of
the nodes which is the second norm of their availability vector
where k is equal to the replication degree. After the clustering
is done, the replication degree is distributed among the clusters
based on their availability. The availability of each cluster is
defined as the second norm of the average availability vectors
of nodes inside that cluster. Based on the assigned replication
degree to each cluster, the replication is done on the most
available nodes of that cluster [10]-[13].

3) Correlation-Based Replication: Considering the replica-
tion degree as d, the data owner aims to find % pairs of nodes
with the minimum correlation.

Considering just the pairs with minimum correlation may
fall the replication into a pitfall. Two nodes that are not
available at all and hence have an availability vector of all zero
have the minimum correlation respect to each other. However,
they are the worst candidates for replication.

To avoid falling into this pitfall, % pairs of replicas are
initialized with the g most available nodes. After this initial-
ization, each pair has exactly one node. Let’s call that node
the premier of the pair. Next, to complete each pair, the most

available node that has the least correlation with the premier
of that pair is selected.

V. SIMULATION SETUP

To simulate and evaluate the decentralized availability-
based replication algorithms we extended SkipSim [15], [16]
by enabling it to simulate the availability-based replication
algorithms. Table III represents a comparison between the
versions of SkipSim before and after our extensions. The
previous version of SkipSim was capable of generating static
simulations i.e, the simulations where the topology is fixed
and does not change. As the whole SkipSim architecture was
designed in a static oriented manner, adding time feature
to the simulations and making them dynamic was the most
challenging part.

We embedded the high, moderate and low available churn
models into the SkipSim. In the new version of SkipSim, nodes
arrive and depart based on the selected churn model. We also
implemented Awake as well as the state-of-the-art availability-
based replication algorithms in the SkipSim. This package of
the algorithms is called the dynamic replication package. By
the extensions, SkipSim is able to evaluate the performance of
availability-based replication algorithms from the scalability,
average number of available replicas, replication time and
learning factor points of view.

Feature Before extensions | After extensions
Static Simulations
Identifier Assignments
Identifier Assignment Evaluation
Static Replication
Static Replication Evaluation
Churn Models
Dynamic Simulations
Dynamic Replication
Dynamic Replication Evaluation
TABLE III: A comparison of SkipSim features before and after our extensions.

R T N N N NI
A NN N NN NN NN

For each simulation setup, we generated 100 random topolo-
gies. FPTI and TS were set to a day and an hour, respectively.
Each topology was simulated for a lifetime of 3 months. A
simulation step corresponds to an hour. At ¢ = 0 all the nodes
are available in the system. As the time proceeds, nodes depart
from or come back to the system based on the session length
and downtime distributions of the system’s churn model. In
each simulation setup, the replication algorithm is executed at
the end of the second day.

For each topology, at each hour, a number of search trans-
actions are initiated between the nodes. As shown in Equation
11, number of transactions at hour ¢ represented by nirqns, 18
computed as the binomial coefficient of number of available
nodes at hour ¢ (represented by ngyailabie,) and 2. For a search

0.8 T T T T T T
= High Available Model
07 - - - Moderate Available Model | |
0.6 —8— Low Available Model
=z 05
€ o4f
°
2
~ 031
0.2
0.1
0 i X X
0o 1 2 3 5 6 7 8 9 10

Session Length (Hours)
Fig. 2: Extracted churn model session lengths probability distributions from SkipSim

0.8 T ; - . .
= High Available Model
071 - - - Moderate Available Model | |
0.6 [—8— Low Available Model
= 050 i
£ 04 |
=3
2
£ 03 i
0.2 [-
<!
0.1 E -
0 =L L I I L I 1]

5 10 20 30 40 50 60 70
Down Time (Hours)
Fig. 3: Extracted churn model down times probability distributions from SkipSim

transaction done at hour ¢, the search initiator and search target
are selected from the set of available nodes at hour ¢ and set
of all the registered nodes to the system, respectively. For each
transaction, availability table of the nodes on the transaction
path including the source and destination are updated by the
aggregated piggybacked availability vectors. At the replication
time, a data owner is selected uniformly at random that
executes the replication algorithm.

_ Navailable,
Ntrans, = 9

We simulated each algorithm with a system size of 128
nodes under the churn models presented in Table 1. Also,
the scalability of each algorithm was evaluated under the
moderate available churn model with system sizes of 128,
256, 512 and 1024 nodes. Additionally, following the moderate
available churn model, running time, space consumption, and
communication overhead of Awake were evaluated with the
system sizes of 128, 256, 512, 1024, 2048, 4096, and 8192
nodes.

(1)

Correctness of Churn Modeling: To verify the correctness
of our implementations Figures 2 and 3 show the extracted
probability distributions of the session lengths and down
times of churn models from SkipSim, respectively. Table IV
represents the corresponding average values of Figures 2 and
3. Comparing the empirical average values (Table IV) with
the theoretical average values (Table I) results in an average
churn model implementation error of about 3%.

Churn Model

Average SL (Hour)

Average DT (Hour)

High Available
Moderate Available
Low Available

2.03
1.11
8.37

1.07
1.01
58.41

TABLE IV: Extracted average session length and downtime values from the SkipSim.
SL and DT correspond to the session length and downtime distributions, respectively.

VI. PERFORMANCE RESULTS

A. Learning Factor Effect

Figure 4 shows the effect of the learning factor, /3, that
was presented in Equation 1, on the average available number
of replicas. In this experiment, the replication degree was
fixed to 4 and the algorithms were simulated under the
moderate available churn model. As shown in this figure, as 3
varies from 0.1 to 0.9, Awake outperforms the cluster based
replication as the best existing solution with the gain of about
20%. Since all of the replication algorithms work at their best
with $ = 0.5, in all simulations the learning factor was set to
0.5.

B. Average Availability of Replicas

Figures 5.a and 5.b depict the average availability of repli-
cation algorithms under the high and moderate available churn
models. Compared to the cluster-based replication algorithm
as the best existing solution under these two models, Awake
improves the average availability of replicas about 24% and
14% under the high and moderate available churn models,
respectively.

In the high available churn model, the correlation between
nodes is high. Therefore, correlations in the pairs of nodes that
are selected by the correlation-based replication algorithm are
too far from zero. This causes the correlation-based replication
to perform the worst algorithm under the high available churn
model. This problem is ameliorated in the moderate available
churn model as the correlation between the nodes degrades,
and the correlation-based replication beats the randomized
replication.

Figures 5.c shows the average availability of replication
algorithms under the low available churn model. Under this
model, the correlation between nodes reaches its minimum
and many suitable replication candidate pairs with close to
zero correlation emerge. In this case, the correlation-based
replication algorithm conquers the cluster-based replication
and becomes the best among the existing solutions. However,
under the low available churn model, Awake outperforms the
correlation-based replication with the gain of about 26%.

Considering the low available churn model, as the replica-
tion degree increases, cluster-based replication assigns replica-
tion quota to the low available cliques with higher probability.
The replicas from low available cliques do not play a signif-
icant role in the performance of the cluster-based replication
algorithm. This causes the performance of the cluster-based
replication to reach a steady state and even is beaten by
the randomized replication when the replication degree goes
beyond 8 replicas as illustrated in Figure 5.c. This trend

Fi

g

Average number of available replicas

. 4: Effect of the learning factor, 3, on the performance of replication algorithms. Awake performs about 20% better compared to the best existing solution.

=
S

(=T R U SO R e -

—>¢ Awake
—— Cluster-Based

- - - Correlation-Based
—&- Randomized

<)

Average number of available replicas

Average number of available replicas

0

—=- Randomized
Cluster-Based

- - - Correlation-Based
- Awake

0

=
o

T 1
0.1 0.3 0.5

S value

0.7

0.9

| |-~ Correlation-Based

—% Awake
—— Cluster-Based

—&- Randomized

(=R CR U S L S B =)
T

<)

8 10

=
IS

— Awake

—— Cluster-Based

- - - Correlation-Based
~- Randomized

Average number of available replicas

(=R R U S =SS B =)
T

o

Replication degree
(a) High available churn model

of randomized and cluster-based replication algorithms was
verified with the higher replication degrees as well.

C. Scalability

We examined all the replication algorithms under the mod-
erate available churn model with the system sizes of 128,
256, 512 and 1024 nodes. In all of the simulation setups, the
replication degree was fixed to 4 replicas. Figure 6 shows
the scalability behavior of the replication algorithms when
the replication degree is fixed and system size is scaled up.
As shown in this figure, for a certain replication degree,
the performance of all the replication algorithms of interest
including Awake is independent of the system size. The same
behavior was observed with the high and low available churn
models. Also, our scalability analysis confirms that the results
obtained in the 128 node scenarios are consistent with other
system sizes as well.

Under the moderate available churn model and fixed repli-
cation degree of 4 replicas, on the average Awake outperforms
the cluster-based replication algorithm as the best decentral-
ized counterpart with the gain of about 23%, where the
average is taken over all the system sizes.

D. Replication Time

A later replication time gives more chance to the data owner
to learn about the availability behavior of the system. For
this sake, we examined all the algorithms with the replication
times of a day, two days, a week, and a month under the
moderate available churn model in a system with 128 nodes
and replication degree of 4 replicas. On average, about 1702
random transactions were initiated per TS.

Replication Degree
(b) Moderate available churn model

Replication degree
(c) Low available churn model
Fig. 5: Average number of available replicas at each hour vs replication degree under different churn models. Compared to the best existing solutions Awake performs about 24%,
14% and 26% better under the high, moderate and low available churn models, respectively.

]
2
N 3 N
= s
=
ks
R e e ——
o . ——&8———414
=] 2 1
o}
=)
S = Awake
o 1 —— Cluster-Based
%‘) - - - Correlation-Based
:% —&- Randomized

0 I ! T

0 128 256 512 1,024

System Size
Fig. 6: Scalability of replication algorithms over different system sizes. Replication
degree is set to 4. Awake performs about 23% better compared to the best previous
work.

As shown in Figure 7, a replication time around two days
-when each time slot has been updated at least once- is enough
for all the replication algorithms to operate at their bests. A
replication time longer than two days almost has the same
effect on the performance of replication algorithms as a two
days replication time does. The same behavior was observed
with the high and low available churn models. Considering
all the replication times, in comparison to the cluster-based
replication as the best existing solution, on the average Awake
performs around 21% better.

E. Running Time

Table V shows the average running time of Awake in
seconds under the moderate available churn model as the
system size is scaled up. The average was taken over 100
simulation runs. The running times were measured with the

System Sizes (Nodes) 128 256 512 | 1024 | 2048 | 4096 | 8192
Running Time (Second) 0.12 | 0.26 | 0.49 1.08 2.13 4.61 9.01
Space Consumption (KB) 3 12 24 48 96 192
Communication Overhead (KB) | 0.37 | 043 | 048 | 0.57 0.59 0.64 0.71

TABLE V: Running time, space usage and communication overhead of Awake as the system size is scaled up.
Replication degree is set to 4. Number of simulation runs = 100 times. Churn model = Moderate available model.

= Awake

1r —— Cluster-Based

- - - Correlation-Based
—=- Randomized

Average number of available replicas
o o
|
|
*W
EE '
'
k
'
'
‘ '
'
'
'
'
‘ '
'

012 7 31
Replication time (day)
Fig. 7: The effect of replication time on the performance of replication algorithms.
Awake performs about 21% better compared to the best existing solution.

system sizes of 128, 256, 512, 2048, 4096 and 8192 nodes.
The replication degree in all of the simulations was fixed to 4
replicas. We also measured the running time of Awake under
the high and low available churn models and similar results
were obtained.

As shown in Table V, as the size of the system is scaled up,
the running time of Awake increases linearly. At our simulation
extreme with 8192 nodes system capacity, an execution of
Awake takes around 9 seconds. Following the trend of running
time, in a system with 1 million nodes, Awake is supposed to
select the replicas in about 17 minutes.

F. Space Consumption

In a system with /N nodes and availability vector of size
S, the availability table of a node contains N x S probability
values. Since S is constant, the space complexity of Awake is
O(N) and hence is linearly dependent on the system capacity.

Empirically, in our simulations, the probability values were
represented as positive integers between 0 to 100. We used
the byte data type to cast the probability values. The space
consumption of Awake as the system size is scaled up from
128 to 8192 nodes is presented in Table V. At our simulation
extreme with 8192 nodes system capacity, Awake charges
about 192 kilobytes on each node. Extending this trend of
memory consumption, in a system 1 million nodes where the
TS is 24, a node is supposed to need about 25 megabytes to
store its availability table.

G. Communication Complexity

In order to employ Awake on a structured P2P cloud
storage, nodes need to piggyback their availability vector
on the messages they route or initiate. The communication
complexity is, therefore, proportional to the number of the
nodes that the message is traversed on average during the
routing procedure.

We employed a Skip Graph [28] as the underlying routing
infrastructure for our P2P cloud storage. In a Skip Graph with

N nodes, a message traverses O(log N) nodes on average
while it is routed from source to the destination. Hence, the
communication overhead of employing Awake in such system
is O(S x log N) where S is the size of nodes’ availability
vector. Since S is constant, the communication overhead is
simplified to O(log N') which is asymptotically the same as
the number of nodes that a message is traversed on average
during the routing procedure. Based on our simulation setup
the communication overhead of Awake is logarithmically
dependent on the system capacity.

The average communication overheads of Awake per mes-
sage over the system sizes are represented in Table V. At
our simulation extreme with 8192 nodes system capacity, an
execution of Awake costs the communication overhead of
about 0.71 kilobytes per message. Following the same trend,
considering a system with 1 million nodes where the TS is
24, and by representing probability values with byte, Awake
is presumed to charge the communication overhead of about
480 kilobytes per message on average.

VII. CONCLUSIONS

To maximize the availability of replicas in the structured
P2P cloud storages, we propose a novel availability aware
replication algorithm. In order to select the replicas, our fully
decentralized availability aware replication algorithm, Awake,
employs the availability vectors of the nodes. The availability
vectors are aggregated in a fully decentralized manner. The
message overhead of this decentralized aggregation is asymp-
totically the same as the communication complexity of the
structured P2P cloud storage that Awake is applied on. Awake
has a linear space complexity in the number of registered
nodes to the system. To the best of our knowledge, Awake
is the only availability aware replication algorithm for the
structured P2P cloud storages that maximizes the availability
of replicas regardless of the underlying churn model of the
system.

We extended the SkipSim simulator and simulated the
state-of-the-art decentralized availability-based replication al-
gorithms. In comparison to the best known decentralized exist-
ing solutions, on the average, Awake improves the availability
of replicas with the gain of around 21%. From the scalability
point of view, as the system size is scaled up, Awake shows the
same performance regardless of scaling. Awake only needs two
days as the learning phase to learn the availability behavior
of the system. In a system with 1 million nodes, Awake is
expected to select the replicas in about 17 minutes, charge the
space consumption of about 25 megabytes on each node, and
charge the communication overhead of about 480 kilobytes
on each message. As our future work, we plan to extend
Awake to select the replicas based on the availability, location,

and storage load of nodes. Considering these factors together
would likely result in the uniform distribution of replicas
among high available nodes with minimum access latency to
the data requesters.

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

D. Yang, Y.-x. Zhang, H.-k. Zhang, T.-Y. Wu, and H.-C. Chao, “Multi-
factors oriented study of p2p churn,” International Journal of Commu-
nication Systems, 2009.

R. Van Renesse and F. B. Schneider, “Chain replication for supporting
high throughput and availability.” in OSDI, 2004.

C. Blake and R. Rodrigues, “High availability, scalable storage, dynamic
peer networks: Pick two.” in HotOS, 2003.

P. Knezevi¢, A. Wombacher, and T. Risse, “Dht-based self-adapting
replication protocol for achieving high data availability,” in Advanced
Internet Based Systems and Applications. Springer, 2009.

V. Simon, S. Monnet, M. Feuillet, P. Robert, and P. Sens, “Splad:
scattering and placing data replicas to enhance long-term durability,”
Technical Document, Inria, 2014.

H. Shen and C.-Z. Xu, “Locality-aware and churn-resilient load-
balancing algorithms in structured peer-to-peer networks,” Parallel and
Distributed Systems, IEEE Transactions on, 2007.

A. Datta and K. Aberer, “Internet-scale storage systems under churn—
a study of the steady-state using markov models,” in P2P Computing.
IEEE, 2006.

S. Ktari, M. Zoubert, A. Hecker, and H. Labiod, ‘“Performance evaluation
of replication strategies in dhts under churn,” in International conference
on Mobile and ubiquitous multimedia, ACM, 2007.

S. Legtchenko, S. Monnet, P. Sens, and G. Muller, “Relaxdht: A churn-
resilient replication strategy for peer-to-peer distributed hash-tables,”
ACM TAAS, 2012.

J. Paiva, J. Leitao, and L. Rodrigues, “Rollerchain: A dht for efficient
replication,” in NCA. IEEE, 2013.

M. Rahmani and M. Benchaiba, “A comparative study of replication
schemes for structured p2p networks,” in 9th International Conference
on Internet and Web Applications and Services, 2014.

H. Shen, “An efficient and adaptive decentralized file replication algo-
rithm in p2p file sharing systems,” Parallel and Distributed Systems,
IEEE Transactions on, 2010.

M. Almashor, I. Khalil, Z. Tari, A. Y. Zomaya, and S. Sahni, “Enhancing
availability in content delivery networks for mobile platforms,” Parallel
and Distributed Systems, IEEE Transactions on, 2015.

S. Le Blond, F. Le Fessant, and E. Le Merrer, “Finding good partners in
availability-aware p2p networks,” in Stabilization, Safety, and Security
of Distributed Systems. Springer, 2009.

“Skipsim: https://github.com/yaahaanaa/skipsim.”

Y. Hassanzadeh-Nazarabadi, A. Kupcu, and O. Ozkasap, “Locality aware
skip graph,” in /ICDCSW. IEEE, 2015.

D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in SIGCOMM. ACM, 2006.

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Mea-
surements, analysis, and modeling of bittorrent-like systems,” in ACM
SIGCOMM, 2005.

R. Jiménez, F. Osmani, and B. Knutsson, “Connectivity properties of
mainline bittorrent dht nodes,” in P2P Computing. 1EEE, 2009.

J. L. J. Laredo, P. A. Castillo, A. M. Mora, J. J. Merelo, and C. Fer-
nandes, “Resilience to churn of a peer-to-peer evolutionary algorithm,”
International Journal of High Performance Systems Architecture, 2008.
D. Wu, Y. Tian, K.-W. Ng, and A. Datta, “Stochastic analysis of the
interplay between object maintenance and churn,” Computer communi-
cations, Elsevier, 2008.

Z. Ou, E. Harjula, and M. Ylianttila, “Effects of different churn models
on the performance of structured peer-to-peer networks,” in Personal,
Indoor and Mobile Radio Communications. 1EEE, 2009.

Z. Yang, Y. Xing, F. Xiao, Z. Qu, X. Li, and Y. Dai, “Exploring
peer heterogeneity: Towards understanding and application,” in P2P
Computing. 1EEE, 2011.

S. Wakayama, S. Ozaki et al., “A design for distributed backup and
migration of distributed hash tables,” in Applications and the Internet,
2008. SAINT 2008. International Symposium on. IEEE.

A. Kermarrec, E. L. Merrer, G. Straub, and A. Van Kempen,
“Availability-based methods for distributed storage systems,” in [EEE
SRDS 2012.

[26]

[27]

(28]

J. Paiva and L. Rodrigues, “Policies for efficient data replication in p2p
systems,” in JEEE ICPADS 2013.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis
and implementation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 2002.

J. Aspnes and G. Shah, “Skip graphs,” ACM TALG, 2007.

