
Verifiable Dynamic Searchable Encryption with Boolean Search

Mohammad Etemad Alptekin Küpçü

Koç University, İstanbul, Turkey
{metemad, akupcu}@ku.edu.tr

Abstract

Using regular encryption schemes to protect the privacy of the outsourced data implies that the client
should sacrifice functionality for security. Searchable symmetric encryption (SSE) schemes encrypt the
data in a way that the client can later search and selectively retrieve the required data. Many SSE
schemes have been proposed, starting with static constructions, and then dynamic and adaptively secure
constructions but usually in the honest-but-curious model.

We propose a verifiable dynamic SSE scheme that is adaptively secure against malicious adversaries.
Our scheme supports file modification, which is essential for efficiently working with large files, in addition
to the ability to add/delete files. We also efficiently support Boolean search queries in such a dynamic
setting, in a verifiable manner.While our main construction is proven secure in the random oracle model
(ROM), we also present a solution secure in the standard model with full security proof. Our experiments
show that our scheme in the ROM performs a search within a few milliseconds, verifies the result in
another few milliseconds, and has a proof overhead of 0.01% only. Our standard model solution, while
being asymptotically slower, is still practical, requiring only a small client memory (e.g., ' 488 KB) even
for a large file collection (e.g., ' 10 GB), and necessitates small tokens (e.g., ' 156 KB for search and
' 362 KB for file operations).

1 Introduction
Huge amounts of data requiring storage, maintenance, and protection is generated these days by individuals
and enterprises. Not all individuals and enterprises possess the physical and human resources required for
data management. Hence, they choose to employ cloud storage services with numerous advantages such as
reduced cost, high availability, and global access to data.

As the outsourced data is stored in a remote domain that the owner has no direct control on it, the data
is encrypted to provide confidentiality. Searchable encryption enables the owner to outsource her encrypted
files, and later search over them and retrieve files selectively, without the cloud service provider (CSP)
learning the keyword or the contents of files. This requires a search token that is generated by the owner
using her secret key. We focus on searchable symmetric encryption (SSE) for performance.

To store a collection of files, the client first determines the dictionary, which is the superset of keywords
that appear in all files. Then, she builds an index, which is a data structure showing which file contains
which keywords. She encrypts both the index and the files, and transfers them to the CSP. To search for
the files containing a keyword, the client generates and sends a token enabling the CSP to search over the
encrypted index, and find and return the corresponding encrypted files.

The efficient SSE schemes [15, 13, 35, 45, 34, 52, 47, 56, 39] reveal some information, such as the number
and sizes of the outsourced files, the access pattern, which relates the set of encrypted files to the tokens
(without learning the contents of the token or the files), and the search pattern, which indicates whether two
or more of the tokens were for the same query [15]. A secure SSE scheme leaks nothing more.

Previous studies on cloud storage mainly considered efficient integrity verification [1, 32, 2, 18, 49, 22, 37,
10, 50, 11]. Our goal in this paper is to achieve integrity and confidentiality simultaneously, while preserving
the efficient search functionality in outsourced storage scenarios. We propose a verifiable dynamic SSE
scheme that is secure against malicious servers, with the ability to efficiently add/delete/modify (parts of)

1

The Turkish Journal of Electrical Engineering and Computer Sciences version is avaiable at:
https://doi.org/10.3906/elk-1901-157

encrypted files, and with security fully proven via simulation in both the random oracle model and the
standard model.

� We present a verifiable dynamic searchable symmetric encryption scheme adaptively secure
against malicious adversaries, and prove its security. Our VDSSE guarantees the authenticity
and completeness of the query results and protects privacy and integrity of the documents, while
enabling efficient search.

� Our scheme supports efficient and provable Boolean search for any Boolean combination of key-
words (not just conjunction or disjunction alone) for dynamic data, tough it leaks all keywords in the
formula (essential for verifiability in our solution).

� Unlike other schemes that only support addition and deletion operations over the encrypted files, our
scheme also supports efficient file modification. This is an important improvement since doing a
delete-then-add operation for a small change on a large file may not result in an acceptable performance.

� Our experimental results confirm the efficiency of our solution: A search query resulting in 500 files
takes ∼ 4 ms to be processed by the server, with ∼ 11 KB proof. Our proof overhead is only 0.01%
compared to the total size of the resultant files. Moreover, adding (deleting) a new file containing
10,000 distinct keywords takes ∼ 3800 (2300) ms. A modification on the file affecting 1000 keywords
takes between 345 and 355 ms, depending on the file size.

� We also propose a dynamic construction secure in the standard model with full simulation security
proof and Boolean search capability. While being asymptotically slower than its random oracle model
counterpart, we argue that its efficiency is acceptable in practice: e.g., for 10 GB of outsourced
files, on average, the client storage is ' 488 KB only, and the search and add tokens are just ' 156
KB and ' 362 KB, respectively.

1.1 Related Work

The oblivious RAM (ORAM) [28] supports search on the outsourced data while hiding the access pattern.
Recently, it is used to construct SSE schemes for hiding memory accesses and preventing leakage [29, 52, 3,
26].However, as the usage of ORAM (one block per access) differs from that of the SSE (many blocks per
access), it cannot fully prevent access or search pattern leakage in SSE [44].

Early works and definitions. Goh [27] introduced the secure index as an efficient data structure for
keyword search. The search time is linear in the number of files.The scheme is secure against chosen-keyword
attacks (CKA1), but Bloom filters cause false positives. Chang and Mitzenmacher [12] gave constructions
with O(n) search time and proposed the simulation-based notion of security that shows the trapdoors do
not leak any information about the keywords queried. Curtmola et al. [15] stated that both CKA1 [27]
and simulation-based [12] definitions are not adequate, and gave a stronger definition (CKA2). Adaptively
and non-adaptively secure schemes with optimal query time O(d) were proposed, where d is the number of
matching documents.

Chase and Kamara [13] introduced the concept of controlled disclosure, i.e., the client discloses some
pieces of (encrypted) data that are necessary for the server to perform its task. They gave constructions for
queries on matrices, labeled data, and graphs. The simulation-based security was used in their proofs.

Yoshino et al. [58] pointed to a security weakness in the existing games for SSE, and gave a new game,
for database applications. But the constraints they put are hard to satisfy, and the proposed construction
has a linear (in the table size) search time.

Dynamic data. The problem in the dynamic setting is that once an update operation is performed, the
server gains extra information related to previous queries. Consider that the scheme uses previous pseudo-
random seeds and keys for the updated files. Then, the server can learn whether or not the newly added files
contain the keywords that have already been queried for (even though the keyword is encrypted and the server
does not know it) [12]. Using a new key for each update and using a pseudo-random function to generate
keys, require a key management scheme and make the search process complicated. Curtmola et al. [15] gave
an optimization to reduce the complexity of such key management from linear to logarithmic.Van Liesdonk
[55] proposed two dynamic SSE schemes. The first scheme requires a large communication for search, and the
second scheme has a limited number of updates. Kamara et al. [35] extended the construction of Curtmola

2

et al. [15] to provide a dynamic SSE (DSSE) scheme. They gave a security definition for DSSE that is
adaptively secure against chosen-keyword attacks (CKA2), and presented the first dynamic CKA2-secure
construction with optimal query time. Kamara and Papamanthou [34] proposed a parallel and dynamic SSE
scheme using a keyword red-black tree, with O((d/p) log n) (parallel) search time, where p in the number of
processors running the operation in parallel. But, the dictionary is static, and large amount of data is stored
at nodes, making the proofs large. Stefanov et al. [52] proposed a dynamic SSE scheme with small leakage,
and achieving forward privacy (i.e., current leakage is not useful for future updates). But, the scheme uses
a structure similar to ORAM that requires redundant heavy rebuilds, and hence, is not suitable especially
for devices with small storage. Cash et al. [8] proposed a dynamic SSE scheme following [9]. It stores all
existing keyword-file pairs encrypted and at a random order on the server. The search time in this scheme
is O(d).

Verifiable SSE. Most existing SSE schemes [12, 15, 13, 35, 42, 8] provide security against semi-honest
adversaries. They assume that the cloud server follows the protocol and gives the correct answers to the
client while trying to learn more information about the outsourced data. A more rough adversarial setting
considers an adversary that follows the protocol, but may not send back the correct set of files matching
the query (attacking completeness of the result) [57, 59, 53].Kurosawa and Ohtaki [38] defined the verifiable
SSE security against the malicious adversaries, that is stronger than the ‘adaptive semantic security’ [15].
These schemes support only static data. Although the schemes of Stefanov et al. [52] and Kamara and
Papamanthou [34] can support verifiability for dynamic data, their proof sizes are very large (the whole
index, in the worst case). Our scheme takes the advantages of both worlds and supports verifiability in
dynamic settings. Recently, several papers provided elegant solutions for verifiability and dynamism, with
forward secrecy [4], potentially via trusted hardware [24]. While the existing schemes perform modification
as ‘delete-then-add’, our scheme supports it directly, thus more efficiently. Simultaneously with our work,
Zhu et al. developed a similar solution [60] in the three-party model using Merkle Patricia trees, without file
modification. We also note that Zheng et al. presented a verifiable dynamic scheme in the public key setting
[59].

Boolean search. Search for Boolean combinations of keywords was an open problem for a while [12, 33].
Existing schemes in the semi-honest model [27, 42, 9, 47, 25] ask the server to perform the Boolean search
and send back the files matching the query, without a proof showing that the query was executed properly
and the returned files are the exact ones. Completeness of the search results is a problem in the malicious
setting. PDSSE [34] can support Boolean search with large proofs for static dictionary. Stefanov et al. [52]
scheme can be extended to support verifiability, but cannot handle efficient Boolean search. BSSE [42] uses
randomized queries and supports general form of Boolean search in the semi-honest setting. Cash et al. also
support efficient Boolean search operation in the semi-honest setting for static [9] and dynamic [8] data.
Blind seer [47] goes one step ahead and preserves privacy of the client query. In fact, the query is sent to
the server encrypted and the server returns the (encrypted) files matching the query. However, blind seer
is mainly for static data and can support updates in a basic way, which is not suitable for highly dynamic
environments, and works in the semi-honest setting. The malicious-client blind seer [25] considers and solves
an access control deviation problem in blind seer when the client acts maliciously. We perform verifiable
Boolean search in dynamic setting efficiently, though leaking all keywords in the Boolean formula, and leave
the privacy-preserving, verifiable and efficient Boolean search in dynamic settings as an open problem.

Attacks. Islam et al. [31] combined the access pattern leakage with the prior knowledge gained from
other streams to find the queried keywords. Liu et al. [40] exploited the search pattern leakage with the help
of prior knowledge to learn information about the words being searched. Cash et al. [7] classified the the
SSE leakages and investigated how they can be abused on different schemes.

Comparison. A comparison among the dynamic schemes is given in Table 1. It reveals that our scheme
is the only dynamic scheme adaptively secure in the presence of malicious adversaries, supporting efficient
and secure file modification as well. We also support Boolean search in an efficient and verifiable manner,
though our leakage in the Boolean search is more than the existing work, since we support both dynamism
and verifiability. While [52] and [8] are claimed to be extensible to the standard model, the security of the
resulting schemes cannot be simulated as is, and needs more work. We give a full construction in the standard

3

Table 1: A comparison of dynamic SSE schemes. (‘ROM’ and ‘STD’ stand for random oracle and standard models,
respectively. ‘Honest+’ means possibility of extending to the malicious setting.)

Scheme Adv. model Dynamism Model Boolean Verifiable File integrity

[55] honest Add, Delete ROM − − −
[35] honest Add, Delete ROM − − −
[34] honest+ Add, Delete ROM − − −
[52] honest+ Add, Delete ROM − − −
[47] honest Add, Delete ROM

√
− −

[8] honest Add, Delete ROM
√

− −
[25] malicious-client Add, Delete ROM

√
− −

Ours malicious Add, Delete, Modify ROM & STD
√ √ √

model and prove its security via simulation. A more detailed comparison will be provided in Section 5.2.

2 Background

2.1 Preliminaries

Notation. We use x ← X to show x is sampled uniformly from the set X, |X| to show the number of
elements of X, and || for concatenation. PPT denotes probabilistic polynomial time, and k is the security
parameter. By efficient algorithms we mean those with expected running time polynomial in the security
parameter. A function ν(k) : Z+ → [0, 1] is called negligible if ∀ positive polynomials p, ∃ constant k0 s.t.
∀ k > k0, ν(k) < 1/p(k). Overwhelming probability is ≥ 1− ν(k) for some negligible function ν(k).

Hash functions take arbitrary-length strings, and generate fixed-length outputs. Let h : K×M→ C be
a family of hash functions, where each member is identified by a K ∈ K. A hash function family is collision
resistant if ∀ PPT adversaries A,∃ a negligible function ν(k) s. t. Pr[K ← K; (M,M ′)← A(h,K) : (M ′ 6=
M) ∧ (hK(M) = hK(M ′))] ≤ ν(k).

A symmetric-key encryption scheme is defined as three PPT algorithms SKE= (Gen,Enc,Dec) such
that Gen is the key-generation algorithm that given the security parameter outputs a key; Enc is the encryp-
tion algorithm that on input the key and a message m returns the corresponding ciphertext c; and Dec is
the decryption algorithm that takes the key and ciphertext c as input and gives the message m. We require
SKE to be CPA-secure, which informally means that the scheme leaks no information to an adversary with
access to an encryption oracle. For formal definitions, refer to [36].

Pseudo-random function (PRF). Let GenPRF(1k)∈{0, 1}k be a key generation function, l the keyword
length and l′ the encrypted keyword length, F : {0, 1}k × {0, 1}l→{0, 1}l′ be a family of pseudorandom
functions, and F ′: {0, 1}l→{0, 1}l′ be the family of all functions mapping l-bit strings to l′-bit strings.
Define Fs : {0, 1}l → {0, 1}l′ as Fs(x) = F (s, x). F is a PRF family if ∀PPT distinguishers D,∃ a negligible
function ν(k) such that: |Pr[s← GenPRF(1k) : DFs(.)(1k) = 1]− Pr[f ′ ← F ′ : Df ′(.)(1k) = 1]| ≤ ν(k).

Searchable symmetric encryption enables a client to store encrypted data on the server, and later
query the encrypted data, giving the server the corresponding search tokens, which are generated using the
client’s secret key. The server uses the search token to find and return the matching encrypted files.

File collections. The client owns n files f=(f1, f2, ..., fn), each with a unique identifier id(fi). The files
are encrypted as c=(c1, c2, ..., cn) using a CPA-secure symmetric encryption scheme, where ci = Enc(K, fi).
The set of all unique keywords contained in the collection of files is called the dictionary, and is represented by
w = {w1, w2, ..., wm}. We refer to the list of the files containing the keyword w as fw (i.e., fw = {fi : w ∈ fi}),
and to that of the encrypted files as cw (i.e., cw = {ci : fi = Dec(K, ci) ∧ w ∈ fi}). The set of keywords a
file contains is wf = {wi : wi ∈ f}). The files can be of any type as long as a keyword index operation for
them is provided. N is the number of all keyword-file matchings.

An authenticated data structure (ADS) provides membership and non-membership proofs for the
queried data items [54]. A skip list [48] based ADS achieves logarithmic proofs [30]. Merkle hash tree [41]
is another widely used ADS for static data. Each leaf node stores the hash of its associated data, and each
internal node holds the hash of its children. Because the leaves are ordered, non-membership proofs may be

4

(a) An authenticated skip list. (b) Verification.

Figure 1: (a) An authenticated skip list storing six items and (b) Verifying proof of d2.

provided by showing two consecutive items without the queried data where it should have been. The value
of the root is the digest of the ADS that is stored by the client as metadata.

Figure 1a illustrates an authenticated skip list storing six data items. ‘−∞’ and ‘+∞’ are two special
values known as the left and right boundary values, respectively. The proof path of a query about d2 is
drawn using the dashed lines and the parts contributing to the proof are colored. The membership proof
generated for d2 in the simplest form looks like: ‘h1, d2, h(d3), h2, h(+∞)’. Except for the queried value that
is sent in clear as part of the proof, all others are the hash values stored at the nodes in the proof path. Using
the proof, the client reconstructs the required part of the ADS, and compares its digest with the one she
keeps locally, as presented in Figure 1b. Any mismatch shows misbehavior of the server. Briefly, if item d2
did not exist (assume both nodes with label d2 did not exist in Figure 1a), then the non-membership proof
would have looked like ‘h(−∞), h(d1), h(d3), h2, h(+∞)’ enabling verification of d1 and d3 being consecutive
without d2 existing.

A hierarchical ADS (HADS) consists of multiple levels of ADSs, possibly of different types [22, 21, 23].
It relates together the relevant data stored at different levels, and can easily be distributed on multiple
servers. The formal definition of HADS is provided in C for reference.

A dynamic provable data possession (DPDP) scheme provides proofs of integrity for the outsourced
data, while enabling efficient updates [18]. Using hash functions or message authentication codes over the
whole outsourced file instead, will not work as they cannot support later updates efficiently. The formal
definition of DPDP is given in D for reference. It is possible to construct a DPDP scheme using an HADS.

2.2 Our Model

Figure 2: Our VDSSE model.

There are two parties in our Verifiable Dynamic SSE (VDSSE) model.
The client performs the required pre-computations, builds the indices,
and uploads the (encrypted) indices and files to the server. The server
is in possession of resources and equipment required for hosting the out-
sourced data and answering the client requests. Later, the client asks
the server to perform search, deletion, modification, or addition on the
encrypted data, giving the appropriate token and other necessary infor-
mation. The token contains the required information that enables the
server to perform the operations on the encrypted indices, and can be
generated using the secret key of the client. Other necessary informa-
tion may include the new file to be added, modifications to the file, and
possibly pseudo-random seeds for randomized operations. The server

performs the operation, and generates and sends the answer and proof to the client. For simplicity, we
assume a single-client model as presented in Figure 2.

Using the search token, for example, the server finds the set of encrypted files cw that contain the keyword
w, and sends back those files along with the proof that the search was indeed done as requested. The proof
is necessary in the malicious setting. The client will accept the result if and only if the proof is verified.

All these operations are performed on the encrypted data, and hence, the server will not find out which
keyword is searched for, or what the contents of the files are. But he will learn that all files in the set of
(encrypted) files selected as the search result contain the queried keyword, as well as the fact that all other

5

files do not. Moreover, update operations reveal which encrypted keywords are added/removed to/from
which encrypted files. Hence, dynamic schemes leak more information than the static ones [35]. We allow
access pattern and search pattern leakages, and precisely specify what leaks with each token.

Adversarial model. The server can act maliciously, or be subverted by the attackers to do so. He
may cheat by attacking the verifiability (sending a wrong set of files to the client), or the integrity of the
outsourced data (modifying the file contents), while trying to be undetected. Furthermore, he may try to
obtain more information about the keywords or files than what is leaked by the tokens.

2.3 Overview of Our Solution

Problems. Memory-checking schemes can support confidentiality in addition to integrity [1, 32, 18, 5, 49,
16, 2, 20]. But, we need to solve two more problems:1) efficient search over encrypted data, and 2) verifiability
(proving that the files returned by the server are exactly the ones matching the query, i.e., there is no extra or
missing or corrupted file). The straightforward solutions either require employing deterministic encryption
as in [51], which is vulnerable to statistical attacks leading to revealing the file contents, or transferring
all the documents to the client, which is not efficient. SSE was mainly proposed as a remedy to the first
problem, while it should take into account the second one as well.

The Boolean search makes the problem even worse, as it requires providing verifiability for multiple
keywords efficiently. The problem is that the (encrypted) indices are built around single keywords, without
any efficient algorithm for combining them and generating proofs for a Boolean combination of keywords.
Existing solutions (e.g., [9, 42, 47, 25]) work in the semi-honest setting and do not support verifiability.

Figure 3: VDSSE architecture.

Our Solution. To be secure against malicious adversaries, an SSE
scheme may employ two parts: an integrity-preserving part (i.e., a
memory-checking scheme) and a verifiability-providing part (i.e., an index-
based SSE scheme). The server storage in our scheme consists of three
parts: the file index (FX) stores security information of the encrypted files
and generates integrity proofs; the inverted index (FI) and the forward
index (II) are the encrypted indices used for providing verifiability. The
client stores the keys and digests of these indices (RFX , RFI , and RII) as
metadata for verification. The server’s answer contains the requested files
and the associated verifiability and integrity proofs (PFI , PII and PFX)
as shown in Figure 3.

The inverted index is a two-level HADS tying each keyword to the
set of file identifiers containing the keyword. The encrypted keywords

are located in the first-level ADS, which is used to generate proofs showing (non-)existence of the queried
(encrypted) keyword(s). This is a new feature not provided by most of the existing schemes. Each node
storing a keyword is connected to another ADS at the second level, who stores the encrypted file identifiers
containing the keyword. The proofs generated using this second-level ADS assures the client about the
verifiability of the received response (i.e., no extra or missing files).

The inverted index does not suit file deletion well since the server should traverse the whole data structure
to find all occurrences of the file and delete them. The forward index links each file identifier to the set of
keywords the file contains, for efficiently locating them in the inverted index. Therefore, we build another
two-level HADS that stores the file identifiers in the first level, and links them to the second-level ADSs
storing the encrypted keywords each file contains. The elements in each second-level ADS carry information
needed for locating the corresponding keywords in the inverted index. To delete a file, the server finds its
keywords using the forward index, removes them from the forward index, and uses the provided information
to efficiently find and delete the links between these keywords and the file in the inverted index.

The file index is another two-level HADS. The first-level ADS stores the file identifiers, and provides
proofs showing (non-)existence of the files. For each file, a second-level ADS is constructed as a dynamic
provable data possession (DPDP) scheme [18, 20], providing its integrity. All update operations on the files
are prepared and performed accordingly. For each operation, DPDP provides a proof through which we can
verify that the operation is performed correctly.

6

(a) The forward index. (b) The inverted index. (c) The file index.

Figure 4: The example scenario with three files and four keywords.

These three data structures support provable operations (search/add/delete/modify) on the encrypted
outsourced files. The first-level ADSs fulfill two functionalities: providing (non-)membership proofs for the
queried keywords and file identifiers, and locating the corresponding second-level ADSs. A search operation
accesses the forward and file indices (FI and FX), while the update operations on files (add/delete/modify)
affect the forward index (II), too. This way, future search operations return correct and consistent answers.

The client stores the digests (the values stored at the root) of the three HADSs, together with the required
keys (three PRF keys, one symmetric encryption key, and the DPDP key). Hence, the client storage is O(1).

An illustrative example. We use an example to better understand the indices and the relations among
them. Assume that there are three files and four keywords: f1 contains (w1, w3, w4), f2 contains (w2), and
f3 contains (w1, w4). The files are divided into two, two, and four blocks, respectively. Figure 4 shows
a simplified representation of the indices where the file and keyword identifiers are used instead of their
encrypted versions. The HADSs employed in the figure are based on authenticated skip lists.

Search. To answer a search query, the server first locates the queried keyword(s) in the first-level ADS
of the inverted index (thus information about individual keywords leak). If not found, he generates and
sends back a non-membership proof. If found, he generates the membership proof, and finds the respective
second-level ADS(s) to extract the identifiers of all files containing the keyword(s). Then, he prepares the
integrity proof for those files using the file index. Finally, he sends all proofs and files matching the query
(if any) to the client. For a Boolean search, we employ an algorithm to operate via intersections, unions,
or complementations on the second-level ADSs of all queried keywords and generate efficient proofs. This
way, the server only needs to send the final resulting set of files to the client, even in the malicious setting.
Even though the leakage is not optimal, it is a first-of-its-kind efficient solution to work in a dynamic and
verifiable manner.

File addition. The server first generates a second-level ADS including all (encrypted) keywords in the
file (given in the token), and ties its root to the file identifier in the first level of the forward index, as shown
in Figure 7b, where a new file f4 containing keywords w2 and w4 is added. Then, he adds the file identifier
into the second-level ADSs of all its keywords (w2 and w4). The result is illustrated in Figure 7a. He also
builds a second-level ADS according to DPDP and relates its root to the file identifier in the first level of
the file index, as in Figure 7c (illustrated assuming that the file is composed of three blocks). Finally, he
sends proofs of all these operations to the client.

File deletion. To delete a file, the server first locates the corresponding second-level ADS of the file in
the forward index, using which he accesses all file keywords to delete the relations between the file identifier
and all its keywords in the file index. Then, he deletes the corresponding second-level ADS of the file in
both the forward index and the file index. Finally, he deletes the file itself, and sends the proofs of all three
indices to the client. As an example, to delete f3 from Figure 4, the server realizes through the related
second-level ADS in the forward index, that f3 has two keywords: w1 and w4. Using this information, he
finds and deletes f3 from the second-level ADSs of w1 and w4 in the inverted index. Then, he deletes f3 and
its second-level ADS from both the forward index and the file index.

File modification deletes some already-existing keywords and adds some new ones by operating on the

7

forward and inverted indices as the file addition and deletion, while performing a modification on file index.

3 VDSSE: Verifiable Dynamic Searchable Symmetric Encryption

3.1 Security Description

A secure SSE scheme should be verifiable (i.e., satisfy file integrity and query completeness in the presence of
malicious adversaries) and private (i.e., the adversary cannot gain more information beyond what is allowed).
We define these security requirements intuitively first, and then provide formal definitions in the next section.

Verifiability. The server cannot deceive the client into accepting a wrong response. If he adds, deletes,
modifies contents of some files, or sends a set of files different from the actual query result, he will be caught
with overwhelming probability. We formalize this concept through a game similar to that of an ADS [30, 21].

Privacy. Ideally, nothing should be leaked about the keywords and the files [15, 13, 35, 52]: 1) the
index and the set of encrypted files reveal no information about the original index and files, and 2) the set
of adaptively-generated tokens reveals no information about the queries, the index, and the files. Almost all
existing SSE schemes [27, 12, 15, 13, 35, 34, 52, 53, 8] reveal the access and search patterns for efficiency.

In fact, by uploading the encrypted index and files, the server learns at least the number of files and their
sizes. Moreover, each query leaks some limited information about the files and keywords, e.g., the server will
learn all encrypted files found as the result of a search query share the encrypted keyword, and whether or
not different queries were for the same keyword. Dynamic schemes reveal more information [35].

We prove that both of our solutions (the random oracle model version, as well as the standard model
scheme) are CKA2-secure. This is proven using a simulator that acts in an indistinguishable manner to the
client, and performs operations by only knowing the leakage. Since the simulator performs the operations
only knowing the leakage, it is impossible for the adversary to learn more than the leakage. Essentially, this
is the same proof strategy as in the zero-knowledge simulator for the proofs.

Leakage. For each operation, the client reveals some information to the server to help him fulfill the job.
Therefore, some information about the client’s queries and the files containing each (queried) keyword leaks.
To formalize the leakage during the system initialization and execution, we use multiple leakage functions
(described in Section 5.1) each capturing the information leakage from a different viewpoint.

3.2 Formal Definitions

Definition 1 A verifiable dynamic SSE scheme includes the following PPT algorithms:

The following algorithms are executed by the client:

(sk, pk)← KeyGen(1k) is an algorithm to generate a secret and public key pair (sk, pk) given the security
parameter k in unary. The public key pk is shared with the server.

(I, c,M)← BuildIndex(sk, f) is an algorithm that given the secret key sk and a file collection f, creates
the encrypted index I and file collection c to be sent to the server, and the local metadata M .

f = Dec(sk, c) is a deterministic algorithm that given the secret key sk and a ciphertext c, outputs the
corresponding plaintext file f .

Ts = SearchToken(sk,M,w) given the secret key sk, the metadata M , and a keyword w from the dictionary,
creates a search token Ts to be sent to the server.

Tb = BooleanSearchToken(sk,M, φ(w1, w2, ..., wt)) is an algorithm that given the secret key sk, the meta-
data M , and the Boolean combination of keywords (using ‘∧’, ‘∨’, ‘¬’), computes a Boolean search
token Tb that is sent to the server.

(Ta, c) = AddToken(sk,M, f) is an algorithm that given the secret key sk, the metadata M , and a file f ,
creates an addition token Ta and the corresponding ciphertext c.

Td = DeleteToken(sk,M, id(f)) takes the secret key sk, the metadata M , and the file identifier id(f) as
input, and outputs a deletion token Td.

8

(Tm, cm, inf) = ModifyToken(sk,M, id(f),m) takes the secret key sk, the metadata M , the file identifier
id(f), and the modification m on the file, and creates a modification token Tm with an encrypted
modification cm and information about it inf , to be performed on the file.

({accept, reject},M ′)← Verify(sk,M, cw, π) is run on an answer cw (empty for updates) and a proof π.
It emits an acceptance or a rejection signal, and updates the metadata M (to M ′) in case of acceptance.

These algorithms will be executed by the server:

(cw, π) = Search(pk, I, c, Ts) is an algorithm to find and return the encrypted files containing a keyword.
It takes as input the client’s public key pk, the encrypted index I, the encrypted file collection c, and
the search token Ts, and outputs a subset of the encrypted files cw ⊆ c matching the search token Ts
and a proof π showing that the result is authentic, to be sent to the client.

(cw, π) = BooleanSearch(pk, I, c, Tb) is to find and return the encrypted files matching the Boolean com-
bination of the keywords. It takes as input the client’s public key pk, the encrypted index I, the
ciphertexts c, and the Boolean search token Tb, and outputs a subset of the encrypted files cw ⊆ c and
a proof π that shows the result is authentic.

(I ′, c′, π) = Add(I, c, Ta, c) is an algorithm to add a new encrypted file into the collection of encrypted files
c and update the index I accordingly, given the add token Ta with the new ciphertext c. It outputs
the new index I ′, the new collection of encrypted files c′, and the proof π showing the operation is
performed correctly.

(I ′, c′, π) = Delete(I, c, Td) given the encrypted index I, the collection of encrypted files c, and the delete
token Td, deletes the specified file and generates the updated index I ′ and the file collection c′, along
with the proof π.

(I ′, c′, π) = Modify(I, c, Tm, cm, inf) is run to modify an encrypted file in the collection c and the encrypted
index I given the modification token Tm, the encrypted modification cm, and information inf about
the modification. It outputs the new index I ′, the new (modified) file collection c′, and the proof π.

Definition 2 (Correctness of a VDSSE scheme) A VDSSE scheme is correct if ∀ k ∈
N, ∀ f, ∀ (sk, pk) ← KeyGen(1k), ∀ (I, c,M) ← BuildIndex(sk, f), and ∀ series of update com-
mands, a search query returns only the most recent versions of exactly the file(s) satisfying the criteria, and
the file contents are original.

Definition 3 (Security of a VDSSE scheme) A VDSSE scheme is secure if it is verifiable and pri-
vate, as per definitions below.

Definition 4 (Verifiability of VDSSE) We say that a VDSSE scheme is verifiable if no PPT adversary
can win the verifiability game with non-negligible probability. The verifiability game below is played between
the challenger who acts as the client and the adversary who plays the role of the server.

Setup The challenger runs KeyGen(1k) to generate the secret and public keys (sk,pk) and shares the public
key pk with the adversary. The adversary sends a file collection f to the challenger who runs (I, c,M)←
BuildIndex(sk, f), and sends the resulting (I, c) back.

Query The adversary can interact with the challenger polynomially-many times. At
each interaction, the adversary adaptively asks challenger perform a command ∈
(Search, BooleanSearch, Add, Delete, Modify) of his choice. The challenger then sends back
the proper token Tx ∈ {Ts, Tb, Ta, Td, Tm} with any other necessary information about the update (i.e.,
c for Add or cm, inf for Modify). For each such query, the adversary sends a proof π and any other
result (i.e., cw for Search) to the challenger, who notifies the adversary of the verification result. The
challenger applies the verified and accepted changes to her local copy of the file and index storage.

Challenge The challenger sends a query to the adversary, who responds with an answer and proof (e.g.,
a c′w and π′ for Search). The adversary wins if the answer c′w differs from the result of running the
query on challenger’s local copy, but the proof π′ is accepted.

9

Definition 5 (Privacy of a VDSSE scheme (a.k.a. Dynamic CKA2-security)) Let VDSSE =
(KeyGen, BuildIndex, Dec, SearchToken, Search, BooleanSearchToken, BooleanSearch, AddToken, Add,
DeleteToken, Delete, ModifyToken, Modify, Verify) be a VDSSE scheme. Consider following experiments
with a stateful adversary A, a stateful simulator S, and stateful leakage functions LInit, LSrch, LBlSrch,
LAddDel, LMod:

RealA(k) : S generates the keys (sk, pk) by running KeyGen(1k), and shares the public key pk with
A. A outputs a file collection f. S generates the encrypted indices and file collection through
(I, c,M)←BuildIndex(sk, f) and sends (I, c) toA. Then, A performs a polynomial number of adaptive
queries. For each query requested by the adversary, the challenger generates the corresponding token
and sends it to A: for a search query, she generates Ts←SearchToken(sk,M,w), for a Boolean search
query she generates Tb←BooleanSearchToken(sk,M, φ(w1, w2, ..., wt)),for an add query she generates
(Ta, cf)←AddToken (sk,M, f), for a delete query she generates Td←DeleteToken(sk,M, id(f)), and
for a modify query she generates (Tm, cm)← ModifyToken(sk,M, id(f),m), for the keywords and files
of the adversary’s choice. Finally, A outputs a bit b that is the output of the experiment.

IdealA,S(k) : A outputs a file collection f. The simulator S is not given f, but still generates the encrypted
index and file collection (I, c) using the information provided by the leakage LInit, and sends them to
A. The adversary makes a polynomial number of adaptive queries. For each query, the simulator is not
given the information the challenger would have received, but instead is provided by the corresponding
leakage LSrch, LBlSrch,LAddDel, or LMod, using which he prepares and returns an appropriate token
along with the required data, e.g., the ciphertext for an add operation, or the content changes for a
modification. At the end, A outputs a bit b that is the output of the experiment.

Our VDSSE is (LInit, LSrch, LBlSrch,LAddDel, LMod)-private against adaptively chosen keyword attacks
if for all PPT adversaries A, there exists a PPT simulator S and a negligible function ν(k) such that:
|Pr[RealA(k) = 1]− Pr[IdealA,S(k) = 1]| ≤ ν(k).

4 Construction
We use a two-level efficient HADS [21] constructed using authenticated skip lists1 in both levels, to implement
the indices. Our scheme consists of three indices: the forward index, FI, relating each keyword to the set
of file identifiers it appears in, the inverted index, II, tying each file to the set of keywords it contains, and
the file index, FX, linking the DPDP structure of each file as a second-level ADS to its identifier at the first
level. The ADSs have (key, value) pair-based structures.

The first level of the forward index stores the set of encrypted keyword identifiers. It is used to prove
that the queried keyword does (or does not) exist in the set of stored keywords. The keys of the nodes are
the outputs of a PRF on keyword identifiers, as FK1

(id(wi)), and the corresponding values contain Rwi
,

which is the root of the respective second-level ADS, FIwi
, storing the identifiers of the files wi appears in.

We use these second-level ADSs to prove that this set of files is exactly the set matching the keyword in
a search query. We also employ an algorithm operating on these ADSs to generate similar efficient proofs
for Boolean search.For a keyword wi, we associate two keys K ′wi

=FK2
(id(wi)) and Kwi

=FK3
(id(wi)) for

hiding the identifiers of files containing wi (i.e., the identifiers in fwi
). We use these keys to compute the

(key, value) pairs (to build the FIwi
) as keyfj = FK′

wi
(id(fj)) and valfj = ((id(fj) ⊕H1

Kwi
(rj)), rj), for all

id(fj) ∈ fwi , where H1 is a hash function modeled as a random oracle and rj is a random value. The keyfj
will be used for add/delete/modify operations, and the valfj will be used during searches. A small part of
the forward index construction regarding Figure 4a is shown in Figure 5a.

The inverted index, II, has a similar structure, tying a file identifier to the keywords the file contains,
to support efficient deletion and modification. Without it, upon deletion of a file, the server should scan the
whole forward index to find all occurrences of the file identifier; a process that is neither efficient nor private.
The first-level ADS of the inverted index stores the encrypted file identifiers FK1(id(fj)) as the keys, and
Rfj as the values at leaves. Rfj is the root of the second-level ADS, IIfj , storing the keywords fj contains.

1Similar ADSs, e.g., Merkle hash tree [41] or authenticated 2-3 tree [43] can also be used.

10

(a) The forward index. (b) The inverted index.

Figure 5: A small part of real construction showing leaves storing (key, value) pairs. The upper values in
boxes are the keys, and the lower ones are the values.

To build each IIfj , first the two keys K ′fj=FK2
(id(fj)) and Kfj=FK3

(id(fj)) are generated. Then,

they are used to compute the (key, value) pairs as keywi
=FK′

fj
(id(wi)) and valwi

=([FK1
(id(wi))||keyfj]⊕

H2
Kfj

(ri), ri), using the hash function H2 and the random values ri, for all keywords in fj . They contain the

information required for finding the desired nodes in the forward index efficiently (for deletion/modification).
Figure 5b presents a small part of the inverted index construction corresponding to Figure 4b.

The encrypted indices above provide support for verifiability of the queries. That is, they can be used
to guarantee that the file identifiers returned as a response to a search query would indeed be the real
ones matching the query (see Section 4.1). Equally important is to make sure those file contents are also
unmodified. Therefore, we build the file index as another two-level efficient HADS, to protect the integrity
of the outsourced (encrypted) files. At the first level, an authenticated skip list is built using the file identifiers
as keys, and the root of the related second-level ADSs as values. Each second-level ADS is associated with
an encrypted file inside a DPDP [18] or FlexDPDP [19] instantiation to protect its integrity. The DPDP
divides the file into a number of blocks, computes a tag for each block, and puts them into an authenticated
rank-based skip list. Roots of these ADSs are used to construct the first-level ADS, similar to that of the
inverted index2.

The BuildIndex algorithm takes the files in, finds all searchable keywords among them to make the
dictionary w, and follows the above-mentioned steps to build the indices. The client stores the security keys
and roots of these indices locally. The indices are then uploaded to the server along with the encrypted files.

The tokens. Since the indices are encrypted, the client provides the server with the required information
about each operation through tokens. The tokens depend on the client’s private key, and only the client can
generate such tokens. The information required for operations on the file index (according to DPDP) is also
sent with each update token. For its details, we refer the reader to [18].

4.1 Search

Token. The search token carries information about a keyword wi enabling the server to operate on the
encrypted indices and find the file identifiers containing wi. Since the forward index relates wi to the file
identifiers containing it, the token needs to include the required keys to operate on this index. Hence, we
define Ts = (FK1

(id(wi)),Kwi
).

Server computation. Using FK1(id(wi)), the server locates a leaf node in the first level of the forward
index, storing the root of the respective second-level ADS. If not found, he generates a non-membership
proof for FK1

(id(wi)) and returns it with an empty file set to the client. If found, a membership proof for
FK1

(id(wi)) is generated, and Kwi
is used to decrypt the encrypted file identifiers at leaves of the second-level

ADS. Then, the server generates the integrity proofs for these file identifiers using the file index as in DPDP.
Finally, all proofs together with the encrypted files are sent to the client.

2This is also similar to the directory-hierarchy extension of DPDP [18], which proves the (non-)existence of the files.
Therefore, the client needs to keep only single metadata, regardless of the number of files.

11

(a) Search. (b) Verification.

Figure 6: Search and verification operations on the forward index.

(a) The forward index. (b) The inverted index. (c) The file index.

Figure 7: The indices after adding a new file f4 containing w2 and w4. The affected parts are bold.

Example. The search token for the keyword w2 in our example in Figure 4a is Ts =
(FK1(id(w2)), FK3(id(w2))). The first key, FK1(id(w2)), specifies a path to a leaf node in the forward index,
whose value will tell the server which second-level ADS to continue with, as in Figure 6a. The server gener-
ates the membership proof ‘h1;w2;h2, h(+∞)’. (The colored nodes contribute to the proof generation.) The
second key, FK3

(id(w2)), is used to decrypt the leaf values of this second-level ADS to find the file identifiers.
Client verification. Upon receipt, the client first rebuilds the second-level ADS containing the file

identifiers using the information in the proof, and uses its root to reconstruct the proof path of the first-
level ADS of the forward index. Then, she compares the computed root value against the one in her local
metadata, and any mismatch leads to rejection. These steps are presented in Figure 6b. If it is accepted,
she compares the list of files in the answer with those given in the proof, and rejects the answer in case of
any mismatch. Finally, she verifies the integrity of all the received files with the help of the DPDP part of
the proof, and accepts the answer if the integrity of all files is verified.

4.2 File Addition

Token. The add token carries information for adding the tie between the file identifier and all its keywords
into the file index, updating the forward index and the inverted index accordingly. To add the file fj con-
taining s distinct keywords {wit}st=1, the token will look like Ta=(FK1

(id(fj)), {keywit
, valwit

, FK1
(id(wit)),

keytfj , val
t
fj
}st=1). The following example describes how the server uses this token.

Example. We add a new file f4 with two keywords w2 and w4, divided into three
blocks, into the example given in Figure 4. The token will be Ta=(FK1(id(f4)), {keyw2 , valw2 ,
FK1(id(w2)), key2f4 , val

2
f4
, keyw4 , valw4 , FK1(id(w4)), key4f4 , val

4
f4
}). The server first builds a second-level

ADS using the key-value pairs (keyw2
, valw2

) and (keyw4
, valw4

), and ties its root to the first level of
the inverted index using the key FK1

(id(f4)), as shown in Figure 7a. Then, he finds the second-level
ADSs of FK1

(id(w2)) and FK1
(id(w4)) in the forward index, and adds the key-value pairs (key2f4 , val

2
f4

)

and (key4f4 , val
4
f4

) into them, respectively. Finally, he instantiates a DPDP construction for this file as a

12

second-level ADS and ties its root to the first-level ADS of the file index using the key id(f4). The changes
this file addition gives rise to are identified in bold lines in Figure 7. The server sends proofs generated by
each index to the client.

Client verification. The client first builds a second-level ADS using the keywords and the same ran-
domness as the server, and another second-level ADS according to DPDP, and ties them to the first-level
ADS of the inverted index and file index, respectively, using the proof. Moreover, she adds the file identifier
into the second-level ADS of its keywords in the forward index. If all three updated indices match the proof
coming from the server, the client accepts the proof and updates her metadata accordingly.

4.3 File Deletion

Token. The token contains information required for the server to find and delete a file fj and all relations
between this file and its keywords, and update the indices accordingly. FK1

(id(fj)) is needed to locate
the second-level ADS of the inverted index, through which the server obtains the information required for
updating the forward index. To decrypt that ADS, Kfj is needed. To delete the actual (encrypted) file,
id(fj) is required. Thus, the delete token is Td = (FK1(id(fj)),Kfj , id(fj)).

Example. The delete token for deleting f3 containing keywords w1 and w4, from the example in Figure
5 will be Ta=(FK1

(id(f3)),Kf3 , id(f3)). The server first locates FK1
(id(f3)) in the inverted index to find

the respective second-level ADS, and uses Kf3 to compute all H2
Kf3

(ri)s to decrypt the values at its leaves

to attain (FK1(id(w1))||key1f3) and (FK1(id(w4))||key4f3). Then, he locates FK1(id(w1)) and FK1(id(w4))

in the forward index to reach their related second-level ADSs from which he will delete key1f3 and key4f3 ,
respectively. Then, he deletes the nodes storing FK1

(id(f3)) and id(f3) and their related second-level ADSs
from the inverted and file indices, respectively, and the file id(f3). Finally, he sends the proofs to the client.

Client verification. The client applies all modifications locally and compares the result against what
is received from the server. If the proof is accepted, she updates her local metadata accordingly.

4.4 File Modification

Token. The modification is a combination of add and delete tokens, and causes some of the existing relation
between the file and its keywords be removed, and some new ones be added. However, given Kfj (the key
of the hash function), the server can find all keywords in the file. To prevent this, we should give the server
only the required H2

Kfj
(ri)s, which requires knowledge of ris. Therefore, the client gives the server the

valwi
s of the keywords being deleted, receives their ris, and prepares the required H2

Kfj
(ri)s. The token

is Tm=(FK1
(id(fj)), {keywit

, valwit
, FK1

(id(wit)), key
t
fj

, valtfj}
t1
t=1, {keywi′t

, H2
Kfj

(ri′t)}
t2
t=1, id(fj)), where t1,

t2 are the numbers of keywords added and deleted, respectively.
Even though the token treats the index modification as deletion and addition of keywords, the file

operation, which is the slow and large part, is treated as a modification, according to the underlying DPDP.
Previous works indeed required deleting the whole file and adding its new version from scratch.

Server computation. The server manages the newly-added keywords as the file addition, and those
being removed as the file deletion, and sends generated proofs to the client, who performs the verification
similar to the respective cases.

4.5 Boolean Search

Existing solutions. The existing schemes supporting Boolean search [42, 9, 47, 25] assume a semi-honest
adversary: the server executes the query, and finds and sends the resultant files to the client who accepts
them without verification. We propose a dynamic SSE scheme providing verifiable Boolean search. In the
malicious setting, the server’s answers need to be equipped with a proof including sufficient information
enabling the client to check their verifiability. This requires giving more information to the server for the
sake of efficiency ; hence our solution leaks information about individual (encrypted) keywords in the formula.
To employ the existing solutions in the malicious setting, for each individual keyword in the search formula,

13

all files containing the keyword should be sent to the client for verification, which is a very inefficient solution
[9]. We leave the efficient, verifiable, and privacy-preserving Boolean search in dynamic environments as an
open problem.

A naive solution in the malicious setting is that the server generates a proof for each keyword in the
formula, that shows the set of file identifiers each keyword appears in. Then, he performs a sequence of
unions (for ‘∨’), intersections (for ‘∧’), and complementations (for ‘¬’) according to the Boolean search
formula, and prepares the final set of file identifiers satisfying the Boolean search criteria. Finally, he sends
the resultant files together with the proofs to the client. The client first verifies each proof, and if all were
accepted, performs a sequence of unions, intersections, and complementations on the accepted proof results,
similar to the server. Moreover, she checks the integrity of all received files. At the end, she accepts the
answer if the set of file identifiers that are the output of the verification, exactly matches the received files.
We propose a much more efficient approach below.

Token. For each keyword in the Boolean formula, the server needs the same information as a single-
keyword search. Therefore, for a Boolean combination of t keywords, φ(w1, ..., wt), we create one search
token Ts per wi to form the Boolean search token.

Server computation. In the malicious setting, the server can perform better, especially when some
involved second-level ADSs are very large, where only a very small part satisfies the query. Therefore, by
operating on the keyword proofs, he can generate efficient proofs.

We decompose a Boolean search formula to a set of primitive combinations for which a proof using the
existing ADSs can be generated. Each proof provides an authenticated set of file identifiers to the client, used
for generating the final authenticated set of file identifiers by applying a sequence of unions, intersections,
and complementations, according to the Boolean formula. Our key contribution here is that these primitive
combinations are not just for a single keyword, as in the naive approach. Any Boolean combination of
keywords can be constructed using these primitive combinations:

� ¬ϕ(w1, ..., wt): The server sends the proof for ϕ(w1, ..., wt) to the client who will consider the comple-
ment file set to be the query answer if the proof is accepted.

� w1 ∨ w2 ∨ ... ∨ wt: The proof should include at least all distinct file identifiers stored at each ADS
corresponding to a wi. The server can traverse all these ADSs once and generate a space-efficient
proof. The client uses the proof to reconstruct the ADSs for verification. Alternatively, the server
sends proofs of all wis (i.e., the file identifiers in the corresponding ADSs together with the information
required for reconstructing them) to the client, without further computation. The client reconstructs
the ADSs one-by-one, and if all are accepted, outputs the set of distinct file identifiers as the authentic
result. This is a trade-off between the communication and client and server computations.

� �1w1 ∧ �2w2 ∧ ...∧ �twt where �i is either empty or ¬: If all �is are ¬ (i.e., the formula is ¬w1 ∧¬w2 ∧
... ∧ ¬wt), it can be converted into ¬(w1 ∨w2 ∨ ... ∨wt), using De Morgan’s laws. Otherwise, we have
a set of keywords, each with a related second-level ADS, connected by ‘∧’. If the file identifiers were
stored in these second-level ADSs sorted according to their plain values, we could easily compare them
and find the common values. But they are stored sorted on their encrypted values, hence, their plain
values cannot be efficiently compared. Therefore, we first sort these second-level ADSs according to
their sizes (since the order of keywords is not important), and start by the comparing the two smallest
ones. For each file identifier in the first ADS, we generate either a membership or a non-membership
proof in the second ADS, depending on whether it appears in the second ADS or not. This gives us two
sets of file identifiers: one set including those that appear in the second ADS and the other containing
those that do not. We continue comparing the former set with the next ADS similarly, while leaving
out the latter one. This process goes on until all ADSs are accomplished. The important idea behind
this process is that the set of file identifiers to compare with the next ADS gets smaller as we go ahead.
The algorithm is illustrated in F.

Example. Consider the query Q=w2 ∨ ¬(w1 ∧ w3) to be executed on Figure 4. The client pre-
pares the token Tb=(FK1

(id(w2)),Kw2
) ∨ ¬((FK1

(id(w1)),Kw1
) ∧ (FK1

(id(w3)),Kw3
)). The server de-

composes it into primitives Q1=(FK1
(id(w2)),Kw2

) and Q2=((FK1
(id(w1)), Kw1

) ∧ (FK1
(id(w3)),Kw3

)),
and generates their proofs separately using the related second-level ADSs. The proof of Q1 is an ADS

14

proof as πQ1={h(−∞), id(f2), h(+∞)}. For Q2, we use the algorithm 1 that generates πQ2= {h(−∞);
{id(f1):h(−∞), id(f1), h(id(f3)), h(+∞)};h(+∞)}, which obeys the format: {h(−∞); {id(fi):πid(fi) using
ADSw3

}id(fi)∈ ADSw1
;h(+∞)}. It includes the file identifiers in ADSw1

, each followed by a membership
proof in ADSw3

. The authentic result of Q1 is {id(f2)}, and that of Q2 is {id(f1)}.
Then, the server performs a complementation on the authentic result of Q2, which yields {id(f2), id(f3)},

followed by a union with the authentic result of Q1, achieving the final result {id(f2), id(f3)}. Moreover, he
generates the integrity proof, πint, for the files in the set {id(f2), id(f3)} using the file index. Finally, the
server sends the proofs πQ1

, πQ2
, and πint, together with the encrypted files f2 and f3 to the client.

The client first verifies πQ1
and πQ2

. If they were accepted, she performs the set operations as the server,
and finds {id(f2), id(f3)}. Then, she checks that there must be only two files f2 and f3 in the answer.
Finally, she accepts the answer if πint is also verified.

4.6 VDSSE in the Standard Model

Our scheme employs one-time pad encryption using two hash functions modeled as random oracles. This
is necessary in our proof so that the simulator can later claim he encrypted the correct value, even though
during the encryption process he had no idea about it.Alternatively, one can use a deniable encryption
scheme [6, 17] or a non-committing encryption scheme [14]. It is claimed that [52] and [8] can be extended
to the standard model by replacing the hash functions with pseudorandom functions. But the security of
the resulting schemes cannot be proven.

The one-time pad is a basic non-committing encryption scheme: For any ciphertext, a key matching the
ciphertext to the desired message can easily be found. It can effectively replace our random oracle use.

We use two PRFs F and G to replace H1 and H2. Therefore, instead of storing FK′
wi

(id(fj)) and

((id(fj)⊕H1
Kwi

(rj)), rj) as the (key, value) pair, we store (l, [FK(id(fj))⊕FKwi
(l)]) as the (key, value) pair

at the lth node of FIwi
. Similarly, instead of FK′

fj
(id(wi)) and ([FK1

(id(wi))|| keyfj]⊕H2
Kfj

(ri), ri), we store

(t, [FKfj
(id(wit))||〈[FK(id(wit))||lt]⊕GKfj

(t)〉]) as the (key, value) pair at the tth node of IIfj .

One issue in this simple construction is that it is very likely that id(f1) appears in the first location
of many second-level ADSs of the forward index. Therefore, a two-time pad attack would be possible. To
prevent this type of attacks, we store fwi

and wfj in permuted random order inside their second-level ADSs.
Now, in the absence of random oracles, the server should be given all FKwi

(l) values to answer a search
query (inside the search token). In a similar manner, the server needs all GKfj

(t) values to perform a

deletion, provided by the delete token. To build such tokens, the client should store locally the number of
files containing each keyword wi, cntwi , and the number of keywords each file fj contains, cntfj . In essence,
the tokens change, but the operations remain effectively the same as their random oracle model counterparts.

Search. The search token for wi, in addition to FK(id(wi)), encompasses cntwi
-many one-time pad

keys, i.e., it looks like Ts = (FK(id(wi)), {FKwi
(l)}cntwi

l=1). FK(id(wi)) specify a path in the first level of the

forward index to a second-level ADS, FIwi , whose values will be decrypted using {FKwi
(l)}cntwi

l=1 . The rest
of token generation and the server computation are exactly as in the ROM. We substitute each keyword in
a Boolean search formula with a corresponding token Ts to generate the Boolean search token.

File addition. The client extracts the keywords in the file fj , increments their counter (cntwi
) by

one, and sets {keywil
=l}tl=1, where t is the number distinct searchable keywords in fj . The rest of token

generation and the server computation are exactly as in the ROM.
File deletion. Although we can give the corresponding PRF key to the server as in ROM, we cannot

simulate it in our proof. Instead, the delete token for a file fj conveys all values required for decrypting the
data stored at the respective second-level ADS of the inverted index, IIfj . Hence, the delete token for a file

fj with cntfj -many distinct keywords looks like: Td = (FK(id(fj)), {GKfj
(t)}

cntfj
t=1). It is worth noting that

since the file identifiers in the second-level ADSs of the forward index are position-dependent, removing one
of them needs keeping the other positions unaffected. Thus, instead of deleting the leaf nodes containing
the file identifier, we replace their contents with a NULL value showing the node is empty. This means that
deletion will not reduce the token size of later searches.

15

Modification. Since the keywords of a file are stored with the order of appearance in the related
second-level ADS of the inverted index, upon modification, the client does not know their location in the
related second-level ADS. As in ROM, the client first asks the server the locations of keywords being deleted,
giving him the FKfj

(id(wi)) values. Then, she generates the required GKfj
(t) values for decrypting the

encrypted data at leaves of the second-level ADS IIfj corresponding to the deleted keyword. The rest of
token generation and server computation are exactly as in the ROM.

Optimization. If some additions and deletions are going to be performed almost simultaneously, to
reduce the number of leaves with NULL values due to deletion during the modification, we can replace the
new keywords with the deleted ones. However, if the number of deleted keywords is greater than that of the
new keywords, the remaining deleted nodes will be replaced by NULL values. Note that this combination
optimization is not a security breach, since the server already knows the (encrypted) identifiers of the deleted
and added keywords in a dynamic scheme.

Efficiency. Previously, a search and delete token contained the keys of the hash functions. Upon
receiving this key, all the server needed to do was to run the hash function with the associated ri random
values. Now, the server only stores PRF encryptions of the identifiers, without any randomness. Thus,
server storage decreases a little. But, the client storage increases, as she needs to store, for each keyword
and file identifier, the number of assigned file and keyword identifiers, respectively, which is O(n+m), plus
two extra keys used by F and G. Alternatively, the client can store the counters encrypted on the server [8]
and retrieve them before performing a search. This increases communication and leakage. The search and
delete token sizes also increase, depending on the number of files associated with a keyword and the number
of keywords associated with a file, respectively. We show that these are very realistic numbers in practice.

5 Analysis

5.1 Security

Before going into details of the security proof, we formalize our leakage functions:
LInit shows the information leakage during the initialization: LInit(f)=(|f|, |fwi |wi∈w, |w|, |wfj |fj∈f, |fj |nj=1,
{eid(fj)}fj∈f, {eid(wi)}wi∈w). Briefly, the number of files and keywords, the number of keywords per file
and files per keyword leak, as well as the file sizes and encrypted keywords (eid(wi)s) and file identifiers
(eid(fj)s). The keywords and the files themselves never leak, as they are kept encrypted.

LSrch shows the encrypted file identifiers containing eid(wi) (the access pattern of wi) revealed during the
search operation: LSrch(f, wi) = (eid(wi), {eid(fj)}wi∈fj).

LBlSrch is similar to LSrch but for a Boolean combination of keywords: LBlSrch(f,w′ ⊆ w) = {eid(wi),
{eid(fj)}wi∈fj}wi∈w′ . The leakage is the set of encrypted keyword identifiers, eid(wi), each with its
access pattern.

LAddDel shows the leakage during a file addition or deletion: its size, and the encrypted identifier of the file
and its keywords. LAddDel(f, fj)=(eid(fj), |fj |, {eid(wi)}wi∈fj).

LMod contains the leakage during a modification: the random values used as the inputs of the hash function
for hiding the information about the deleted keywords (leaked in the first round), size of the file after
modification, and the set of encrypted keyword identifiers being added (of size t1) and deleted (of size
t2), leaked in the second round. Finally, LMod(f, fj)=(eid(fj), |fnewj |, {eid(wit)}

t1
t=1, {eid(wi′t

), ri′t}
t2
t=1).

In the standard model, the modify leakage contains the location of the deleted and added keywords:
LMod(f, fj)=(eid(fj), |fnewj |, {lt, eid(wit)}

t1
t=1, {l′t, eid(wi′t

)}t2t=1).

Theorem 1 If a CPA-secure symmetric-key encryption scheme SKE, a secure HADS scheme [21], a secure
PRF F , and two hash functions H1 and H2 modeled as random oracles are employed, then our VDSSE
construction is secure according to Definition 3.

Theorem 2 If a CPA-secure symmetric-key encryption scheme SKE, a secure HADS scheme, and secure
PRFs F , G are employed, our VDSSE scheme in the standard model is secure according to Definition 3.

We prove these formally by proving verifiability and privacy, in A and B.

16

Table 2: Table for comparison of dynamic SSE schemes. (n=|f| is the number of files, m=|w| is the number
of keywords, d = |fw| is the number of files containing w, N is the number of occurrences of all keywords in
all files, and B is the size of a Bloom filter. ‘T. Size’ stands for ‘Token Size’. V DSSERO and V DSSEST

are our schemes in random oracle and standard model, respectively.)

Scheme
Storage Search Add Delete

Client Server T. size Computation T. size Computation T. size Computation

[55] O(m) O(N) O(1) O(d) O(w) O(w) O(m) O(N)

DSSE [35] O(1) O(N) O(1) O(d) O(w) O(w) O(1) O(wd)

PDSSE [34] O(1) O(nm) O(1) O(d logn) O(w logn) O(w logn) O(w logn) O(w logn)

PDSE [52] O(logN) O(N) O(logN) O(d log3 N) O(w) O(w log2 N) O(w) O(w log2 N)

BS [47] O(1) O(nB) O(logn) O(bd logn) O(B) O(B) O(1) O(1)

[8] O(1) O(N) O(1) O(d) O(w) O(w) O(w) O(w)

MCBS [25] O(1) O(nB) O(logn) O(bd logn) O(B) O(B) O(1) O(1)

V DSSERO O(1) O(N) O(1) O(logm + d) O(w) O(logn + w log(md)) O(1) O(logn + w log(md))

V DSSEST O(n+m) O(N) O(d) O(logm + d) O(w) O(logn + w log(md)) O(w) O(logn + w log(md))

5.2 Comparison to Previous Work (Asymptotic)

Table 2 presents an asymptotic efficiency comparison among recent dynamic SSE schemes.
Storage. The client storage in our scheme is optimal (O(1)). Server storage in all schemes are compara-

ble. The client storage in our standard model solution is O(n+m). This is very small compared to the size
of all outsourced files, since for each (large) file, only a few hundred bits are stored. However, this amount
of storage may be noticeable when the number of keywords or files is very large. The same holds for the
standard model extension of PDSE and [8].

Token size. Our VDSSE, together with DSSE, BS, and MCBS have optimal token sizes (constant-size
search and delete, O(w) add tokens). In the standard model, we need to compute and send the PRF outputs
for all leaf nodes of the related second-level ADS, and hence the token sizes increase. Therefore, the search
token is O(d), and the add and delete tokens are O(w). The token sizes of the standard model extension of
PDSE are, however, O(logN) times worse than those of our scheme.

Computation. DSSE possesses the best search time O(d), add time O(w), and delete time O(wd). Our
scheme naturally requires more computation for supporting verifiability and file integrity. We pay an additive
(not multiplicative) O(logm) cost for a membership proof of a keyword, and an additive O(log n) cost for a
membership proof of a file. Removing the verifiability and integrity proofs causes our scheme’s complexities
drop to those of DSSE. In our standard model construction, the client computation increases to O(d) for
generating the search token, and to O(w) for generating the delete tokens, but the server computation is the
same as in the random oracle model. The standard model client and server computation times of PDSE are
again O(logN) times worse than those of our scheme.

To sum up, our schemes are dynamic SSE schemes supporting modifiability and efficient Boolean
search in the malicious setting. Furthermore, our standard model construction is the most efficient such
construction, supporting verifiable dynamic operations and Boolean search, with full security proof. Follow-
ing, we provide concrete performance numbers and demonstrate the practical efficiency of our system.

5.3 Performance Analysis

Setup. To evaluate our SSE scheme, we implemented a prototype with the two-level efficient HADS con-
struction [21] with Flexlist [20] at both levels of the indices, in C++ using Cashlib library. All experiments
were performed on a 2.50 GHz machine with 24 cores (but using a single core), with 16 GB RAM and Ubuntu
12.04 LTS operating system. The performance numbers are averages of 50 runs. We took into account only
the server computation time for working on the encrypted indices, i.e., the server computation time on the
files and the file index is excluded. We have two scenarios.

17

0.5 1 1.5 2 2.5 3

x 10
4

0

2000

4000

6000

8000

10000

12000

Number of keywords in the file

T
im

e
(m

s)

File insertion and deletion

Insertion
Deletion

(a) File addition and deletion.

0 5000 10000 15000
0

1000

2000

3000

4000

5000

Number of modified keywords

T
im

e
(m

s)

Modification of a file containing 30000 keywords

(b) File modification.

2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

Number of keywords in the file

T
im

e
(m

s)

File modification affecting 1000 keywords

Modification (our scheme)
Delete−then−add

(c) File modification.

Figure 8: File addition, deletion, and modification for the first scenario.

5.3.1 First Scenario: Small Number of Large Documents

This scenario corresponds to the case that a client outsources her searchable files to a cloud server. We
investigated the local storage of several accounts at Koç University and observed that there are about 1000
academic papers and ebooks, each containing 5000 to 30,000 distinct keywords, on average. There are about
100,000 distinct keywords in total. This leads to 1000 and 100,000 leaves at the first levels of the inverted
index and forward index, respectively. The number of nodes of the second-level ADSs differs depending on
the number of keywords each file contains, and the number of files each keyword appears in.

File addition and deletion. Figure 8a illustrates the addition and deletion times of a file with different
number of keywords. It shows that the server performs more computation as the number of keywords in the
file increases. This is expected, since the server needs to add/delete all keywords to/from the second-level
ADSs of the forward index. Adding a new file with 5000 and 30,000 distinct keywords, for example, takes
about 2 and 11 seconds, respectively.

File modification. Figure 8b depicts the results of a file modification affecting a different number of
keywords when the file already contains 30,000 keywords. A modification affects a set of keywords on the
indices, and hence, the operation time increases with the number of affected keywords. But for a fixed
number of affected keywords, the modification time is very slightly affected by the total number of keywords
in the file as shown in Figure 8c; i.e., the dominant factor is the number of affected keywords.

We further compare our modification solution to first deleting the file and then adding the modified file,
as required by schemes without file modification capabilities. As the Figure 8c shows, a modification on a
file affecting 1000 keywords takes between 345 and 355 ms in our scheme, while the delete-then-add would
require between 1500 and 9000 ms, based on the file size. This difference would get much worse if we also
consider the file upload and the file index operations.

File search. The server uses the first-level ADS of the forward index to generate the membership proof.
Then, he decrypts all the encrypted file identifiers stored at the leaf nodes of the corresponding second-level
ADS, and sends all the files along with the proof to the client. Hence, the search time does not pose a
considerable variation as the number of keywords increases, and was between 7 ms and 29 ms in our tests.

Boolean search. We performed the Boolean search of the form w1 ∧ w2 for different number of files
(sharing w1 and w2), assuming both keywords appear in almost the same number of files (of which a portion
contains both keywords together). The server needs to traverse the second-level ADSs of all keywords in the
formula, and generate their membership proof at the first level of the forward index. The client, however,
needs to reconstruct the whole second-level ADSs and the proof paths on the first-level ADS for verification.
This is why the client verification times are greater than the server computation times in Figure 9a. Our
Boolean search at the server takes 8 ms when each keyword appears in 100 files and 40 ms when each
keyword appears in 1000 files. However, it takes about 11 and 74 ms for the client to verify them.

Iterated search. The server can send all the search results together, or may send them in small groups

18

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

Number of files each keyword appears in

T
im

e
(m

s)

Client verification and Boolean search

Client verificarion
Boolean search

(a) Boolean search.

0 200 400 600 800 1000
0

5

10

15

20

Number of results

S
iz

e
(K

B
)

Proof size

Sending 50 results each time
Sending all results at once

(b) Proof size.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Number of results

R
at

io

Proof overhead to the result size

Sending 50 results each time
Sending all results at once

(c) Proof overhead.

Figure 9: Proof generation and verification, and proof size and overhead to the query result.

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of keywords in the file

T
im

e
(m

s)

File insertion and deletion

Insertion
Deletion

(a) File addition and deletion.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

Number of modified keywords

T
im

e
(m

s)

Modification of a file containing 5000 keywords

(b) File modification.

1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

6000

Number of keywords in the file

T
im

e
(m

s)

File modification affecting 500 keywords

Modification (our scheme)
Delete−then−add

(c) File modification.

Figure 10: File addition, deletion, and modification for the second scenario.

(e.g., 50 files each time).3 Sending the search results iteratively in groups of a small size helps the client
to stop receiving more results when she is satisfied. Figure 9b compares the server proof generation time
for the cases of sending all the search results together versus sending a result of size 50 files each time. It
shows that the proof sizes for 100 and 1000 files in the result are about 2 and 18 KB, respectively, while that
is about 2 KB for each group including 50 files. As expected, this strategy is meaningful only in scenarios
where the client is expected to stop retrieval before receiving (almost) all the results.

Proof overhead of our scheme is very insignificant compared to the size of resultant files being trans-
ferred, e.g., about 0.01% of the search result size as shown in Figure 9c, and can be neglected.

5.3.2 Second Scenario: Large Number of Small Documents

This scenario corresponds to the case that a large number (e.g., 100,000) of webpages are outsourced to an
untrusted cloud server. We investigated the number of distinct keywords in different websites (e.g., bbc.com,
office.com, nytimes.com, and other websites related to news, technology, and education) using the online
word counter tool from words.contentor.com and realized that the number of distinct words in a typical
webpage is generally between 100 and 5000.

File addition and deletion. The respective times for this scenario are depicted in Figure 10a. It shows
a reduction compared to Figure 8a since each file contains smaller number of distinct keywords (i.e., at most
5000). Figure 10a reveals that the addition of a new file including 500 and 5000 distinct keywords takes
about 420 and 3500 ms, respectively.

3If the search results of all keywords are stored ranked, the client is normally interested in those with high ranks, and may
not want to receive those with low ranks [56, 46].

19

0 50 100 150 200
4

6

8

10

12

14

Number of results returned

T
im

e
(m

s)

Client verification time, sending the result in parts

50000 results
20000 results
10000 results
5000 results
1000 results

(a) Client verification time.

0 1 2 3 4 5

x 10
4

0

200

400

600

800

1000

1200

Number of results

S
iz

e
(K

B
)

Proof size

Sending 50 results each time
Sending all reults once

(b) Proof size.

0 1 2 3 4 5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of results

R
at

io

Proof overhead to the query result size

Sending 50 results each time
Sending all reults once

(c) Proof overhead.

Figure 11: The proof size and proof overhead compared to the query result.

File modification. In a similar manner, the file modification shows a drop compared to the previous
scenario, as shown in Figure 10b. It ranges from 80 to 600 ms when the number of keywords increases
from 100 to 1000. Once again, Figure 10c shows the modification time depends primarily on the number
of affected keywords, not the total number of keywords in the file. Moreover, it illustrates a modification
affecting 500 keywords takes between 310 and 325 ms in our scheme, confirming the 4-20 fold efficiency gain
of our modification solutions compared to the delete-then-add methods.

File search. The search and verification operations behave similarly to the previous scenario. The server
search time increases very slightly with the number of files in the result, and was between 5 and 11 ms.

Iterative search. This scenario resembles the search engines and similar applications, where the client
receives a small part of the query results at a time (e.g., 10 per page for Google). Our server can also prepare
and send a small part of the query results each time, accompanied by the corresponding membership proof.
Since a consecutive part of the results are sent each time, the server uses the range query technique [21]
at the second-level ADSs of the forward index, and hence the computation time changes very slightly with
the number of results returned to the client. But the client needs to verify all results she receives each
time, which increases the verification time. The verification times for different sizes of the query result parts
received each time are presented in Figure 11a, and are around 4 to 14 ms.

Proof overhead. Our scheme generates very small proofs, as illustrated in Figure 11b. When the
whole query results are sent once, the server generates the membership proof for the keyword using the
first-level ADS of the forward index, and only the file identifier existing in the corresponding second-level
ADS. Therefore, the proof size increases with the number of files in the query result. When the results are
sent in parts, the sizes of the proofs are independent of the number of results sent each time, and changes
very slightly with the total number of the files sharing the keyword (i.e., size of the second-level ADS). When
compared to the size of the files in the query result, we observe that our proofs are still insignificant in size,
e.g., < 0.02 times the search result size, as shown in Figure 11c.

5.3.3 Standard Model Performance

Our scheme in the standard model requires O(n+m) client storage. As the encrypted bit-length of a random
file identifier and the number of keywords in a file (e.g., 128 and 20 bits, respectively) are very small compared
to the size of a typical file (e.g., 10 MB), the client storage is very small compared to the outsourced files.

First scenario. With 1000 files (n=1000) and 100,000 keywords (m=100,000), the client storage will
be 101,000×20=2,020,000 bits ' 247 KB, regardless of the file and keyword sizes, depending only on the
number of files and keywords. The search token size is also very small, e.g., 1000×128=128,000 bits ' 16
KB, when a keyword matches all 1000 files. The add token, which is the biggest one in the standard model,
is of size 128 + 10,000×(20+20+128+128)=2,960,128 bits ' 362 KB for a file with 10,000 keywords. The
size of a delete token is about half that of an add token. The modify token depends on the number of deleted
and added keywords.

20

Table 3: Table for comparison of search times (ms) in our scheme and [8].

of files in the result
Cash et al. [8]

Our scheme
2L PH

10 140 8 5

10,000 150 800 11

Second scenario. For 100,000 files (n=100,000) and 100,000 keywords (m=100,000), the client storage
will be 200,000×20=4,000,000 bits ' 488 KB, regardless of the file and keyword sizes, depending only on the
number of files and keywords. The search token size is 10,000×128=1,280,000 bits'156 KB when a keyword
matches 10,000 files. The add token size is 128 + 5000×(20+20+128+128)=1,480,128 bits ' 180 KB for a
file with 5000 keywords. The delete token size is about half that of an add token, and the size of modify
token depends on the number of deleted and added keywords.

5.3.4 Comparison to Previous Work (Concrete)

Cash et al. [8] evaluated the performance of two of their schemes (denoted PH and 2L) on comparable
hardware (see both experimental setups). In our second scenario with a large number of small files, we have
around 250M (keyword, file identifier) pairs. When we compare their similar setting, we obtain the results
shown in Table 3. Their PH solution is optimized for small result sets and performs comparable to our
solution, whereas it performs much worse for large result sets. Their 2L solution, on the other hand, does
not differentiate much based on the result set size, but performs more than an order of magnitude worse,
compared to our solution. This is due to the fact that in Cash et al. [8] work, the (keyword, file identifier)
pairs are encrypted and stored at random locations that necessitate lots of disk accesses at random locations,
while in our case, all file identifiers associated with a single keyword can be stored contiguously. Recently,
Zhu et al. [60] generalized the work of Cash et al. [8] causing time overhead on the order of microseconds.
Thus, our time comparison with Cash et al. [8] immediately applies to the comparison against the Zhu et
al. [60] scheme.

6 Conclusion
In this paper, we presented a verifiable dynamic SSE (VDSSE) scheme for outsourcing encrypted files and
later retrieving them selectively, verifiably in the malicious server setting, and supporting encrypted file
modification. Our VDSSE supports efficient verifiable Boolean search in general, not only conjunction,
though leaking information about individual keywords in the Boolean formula. Using our approach, the
server generates a space-efficient proof for the whole Boolean search result, to be verified by the client. We
also presented a dynamic construction secure in the standard model with full security proof via simulation,
Boolean search capability, and performance evaluation for the first time. Although our VDSSE in the standard
model is asymptotically slower than its counterpart in the random oracle model, its efficiency is acceptable
in practice: e.g., for 10 GB of outsourced files, on average, the client storage is ' 488 KB only, and the
search and add tokens are just ' 156 KB and ' 362 KB, respectively.

Acknowledgement. We acknowledge the support of TÜBİTAK, the Scientific and Technological Re-
search Council of Turkey, under project numbers 114E487 and 115E766, European Union COST Action
IC1306, and the Science Academy BAGEP Distinguished Young Scientist Award.

References
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data

possession at untrusted stores. In ACM CCS’07; Alexandria, VA, USA, pages 598–609. ACM, 2007.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable data possession.
In SecureComm’08; İstanbul, Turkey, pages 9:1–9:10. ACM, 2008.

21

[3] C. Bosch, A. Peter, B. Leenders, H. W. Lim, Q. Tang, H. Wang, P. Hartel, and W. Jonker. Dis-
tributed searchable symmetric encryption. In Privacy, Security and Trust (PST), 2014 Twelfth Annual
International Conference on, pages 330–337. IEEE, 2014.

[4] R. Bost, P.-A. Fouque, and D. Pointcheval. Verifiable dynamic symmetric searchable encryption: Op-
timality and forward security. Cryptology ePrint Archive, Report 2016/062, 2016.

[5] K. Bowers, A. Juels, and A. Oprea. Hail: A high-availability and integrity layer for cloud storage. In
CCS’09, pages 187–198. ACM, 2009.

[6] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In CRYPTO’97; Santa Barbara,
CA, USA, pages 90–104. Springer, 1997.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable encryption.
In ACM CCS’15, CCS ’15, pages 668–679, New York, NY, USA, 2015. ACM.

[8] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Dynamic searchable
encryption in very-large databases: Data structures and implementation. In NDSS’14; San Diego, CA,
USA, pages 23–26, 2014.

[9] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In CRYPTO’13; Santa Barbara, CA, USA,
pages 353–373. Springer, 2013.

[10] D. Cash, A. Küpçü, and D. Wichs. Dynamic proofs of retrievability via oblivious ram. In EURO-
CRYPT’13; Athens, Greece, pages 279–295. Springer, 2013.

[11] N. Chandran, B. Kanukurthi, and R. Ostrovsky. Locally updatable and locally decodable codes. In
TCC, 2014.

[12] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted data. In
ACNS’05; New York, NY, USA, pages 442–455. Springer, 2005.

[13] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In ASIACRYPT’10; Singa-
pore, pages 577–594. Springer, 2010.

[14] S. G. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. Improved non-committing encryption with
applications to adaptively secure protocols. In ASIACRYPT’09; Tokyo, Japan, pages 287–302. Springer,
2009.

[15] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. In ACM CCS’06; Alexandria, VA, USA, pages 79–88. ACM,
2006.

[16] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. Mr-pdp: Multiple-replica provable data possession.
In ICDCS’08, pages 411–420. IEEE, 2008.

[17] M. Dürmuth and D. M. Freeman. Deniable encryption with negligible detection probability: An inter-
active construction. In EUROCRYPT’11. Springer, 2011.

[18] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data possession. In ACM
CCS’09; Alexandria, VA, USA, pages 213–222. ACM, 2009.

[19] E. Esiner, A. Kachkeev, S. Braunfeld, A. Küpçü, and Ö. Özkasap. Flexdpdp: Flexlist-based optimized
dynamic provable data possession. ACM Transactions on Storage, 12(4):23:1–23:44, 2016.

[20] E. Esiner, A. Küpçü, and O. Özkasap. Analysis and optimizations on flexdpdp: A practical solution for
dynamic provable data possession. In ICC’14; Muscat, Oman, pages 65–83. Springer, 2014.

[21] M. Etemad and A. Küpçü. Database outsourcing with hierarchical authenticated data structures. In
ICISC’13; Seoul, Korea, pages 381–399. Springer, 2013.

[22] M. Etemad and A. Küpçü. Transparent, distributed, and replicated dynamic provable data possession.
In ACNS’13; Banff, Alberta, Canada, pages 1–18. Springer, 2013.

[23] M. Etemad and A. Küpçü. Verifiable database outsourcing supporting join. Journal of Network and

22

Computer Applications, 115:1–19, 2018.

[24] B. Ferreira, B. Portela, T. Oliveira, G. Borges, H. Domingos, and J. Leitao. Bisen: Efficient boolean
searchable symmetric encryption with verifiability and minimal leakage. Cryptology ePrint Archive,
Report 2018/588, 2018.

[25] B. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and S. M. Bellovin.
Malicious-client security in blind seer: A scalable private dbms. In IEEE Symposium on Security and
Privacy (SP’15); San Jose, CA, USA, pages 395–410. IEEE, 2015.

[26] S. Garg, P. Mohassel, and C. Papamanthou. Tworam: efficient oblivious ram in two rounds with
applications to searchable encryption. In Annual Cryptology Conference, pages 563–592. Springer, 2016.

[27] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

[28] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams. Journal of the
ACM, 43(3):431–473, 1996.

[29] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via oblivious ram
simulation. In Automata, Languages and Programming, pages 576–587. Springer, 2011.

[30] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data structures for graph
connectivity and geometric search problems. Algorithmica, 60(3):505–552, 2011.

[31] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable encryption: Ramifi-
cation, attack and mitigation. In NDSS’12, 2012.

[32] A. Juels and B. S. Kaliski Jr. Pors: Proofs of retrievability for large files. In ACM CCS’07; Alexandria,
VA, USA, pages 584–597. ACM, 2007.

[33] S. Kamara and K. Lauter. Cryptographic cloud storage. Financial Cryptography and Data Security,
pages 136–149, 2010.

[34] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. Financial
Cryptography and Data Security (FC’13); Okinawa, Japan, pages 258–274, 2013.

[35] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In ACM
CCS’12; Alexandria, VA, USA, pages 965–976. ACM, 2012.

[36] J. Katz and Y. Lindell. Introduction to Modern Cryptography. London, UK: CRC Press, 2008.

[37] A. Küpçü. Official arbitration with secure cloud storage application. The Computer Journal, 58(4):831–
852, 2015.

[38] K. Kurosawa and Y. Ohtaki. Uc-secure searchable symmetric encryption. In Financial Cryptography
and Data Security (FC’12); Bonaire, pages 285–298. 2012.

[39] C. Liu, L. Zhu, and J. Chen. Efficient searchable symmetric encryption for storing multiple source
dynamic social data on cloud. Journal of Network and Computer Applications, 86:3 – 14, 2017.

[40] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan. Search pattern leakage in searchable encryption: Attacks and
new construction. Information Sciences, 265:176–188, 2014.

[41] R. C. Merkle. A certified digital signature. In CRYPTO’89; Santa Barbara, CA, USA, pages 218–238.
Springer, 1989.

[42] T. Moataz and A. Shikfa. Boolean symmetric searchable encryption. In ACM CCS’13; Alexandria, VA,
USA, pages 265–276. ACM, 2013.

[43] M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE Journal on Selected Areas
in Communications, 18(4):561–570, 2000.

[44] M. Naveed. The fallacy of composition of oblivious ram and searchable encryption. Cryptology ePrint
Archive, Report 2015/668, 2015.

[45] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic searchable encryption via blind storage. In
IEEE Security and Privacy (SP’14); San Jose, CA, USA, pages 639–654. IEEE, 2014.

[46] C. Örencik and E. Savaş. An efficient privacy-preserving multi-keyword search over encrypted cloud

23

data with ranking. Distributed and Parallel Databases, 32(1):119–160, 2014.

[47] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George, A. Keromytis, and
S. Bellovin. Blind seer: A scalable private dbms. In IEEE Symposium on Security and Privacy (SP’14);
San Jose, CA, USA, pages 359–374. IEEE, 2014.

[48] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM,
33(6):668–676, 1990.

[49] H. Shacham and B. Waters. Compact proofs of retrievability. In ASIACRYPT’08; Melbourne, Australia,
pages 90–107. Springer, 2008.

[50] E. Shi, E. Stefanov, and C. Papamanthou. Practical dynamic proofs of retrievability. In ACM CCS,
pages 325–336. ACM, 2013.

[51] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In IEEE
Symposium on Security and Privacy. IEEE, 2000.

[52] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small leakage.
In NDSS’14; San Diego, CA, USA, pages 72–75, 2014.

[53] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li. Verifiable privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking. Parallel and Distributed Systems,
IEEE Transactions on, 25(11):3025–3035, 2014.

[54] R. Tamassia. Authenticated data structures. In ESA’03; Budapest, Hungary, pages 2–5. Springer, 2003.

[55] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker. Computationally efficient searchable
symmetric encryption. In SDM’10; Singapore, pages 87–100. Springer, 2010.

[56] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword search over encrypted cloud data.
In ICDCS’10; Genova, Italy, pages 253–262. IEEE, 2010.

[57] J. Wang, H. Ma, Q. Tang, J. Li, H. Zhu, S. Ma, and X. Chen. Efficient verifiable fuzzy keyword search
over encrypted data in cloud computing. Computer Science and Information Systems, 10(2):667–684,
2013.

[58] M. Yoshino, K. Naganuma, and H. Satoh. Symmetric searchable encryption for database applications.
In NBiS’11, pages 657–662. IEEE, 2011.

[59] Q. Zheng, S. Xu, and G. Ateniese. Vabks: Verifiable attribute-based keyword search over outsourced
encrypted data. In IEEE INFOCOM’14; Toronto, Canada, pages 522–530. IEEE, 2014.

[60] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren. Enabling generic, verifiable, and secure data
search in cloud services. IEEE Transactions on Parallel and Distributed Systems, 29(8):1721–1735, 2018.

A Security Proof in the Random Oracle Model
Theorem 3 Our VDSSE scheme is verifiable according to Definition 4, provided that the underlying HADS
[21] scheme is secure.

Proof 1 We reduce verifiability of our VDSSE scheme to the security of the underlying building blocks, the
three HADSs: FI, II, FX. If a PPT adversary A wins the VDSSE verifiability game with non-negligible
probability, we use it to construct a PPT algorithm B who breaks security of at least one of the HADSs, with
non-negligible probability. B acts as the server in the HADS security game played with the HADS challengers
CFI , CII , and CFX . Simultaneously, he plays the role of the challenger in the VDSSE verifiability game with
A. He receives public keys of the HADSs from their challengers and relays them to A.

During the setup phase, B receives commands from A, and forwards each part to the corresponding HADS
challenger in its respective format. At the same time, B builds a local copy of the HADS structures for herself
that is invisible to the adversary A, and thus will not affect his behavior. After the setup phase, A selects
a command, generates the answer and proof for the command, and sends them to B. The adversary wins,

24

if the answer is different from the real answer (B can find the real answer since he maintains a local copy),
and the proof is verified.

The proof has three parts: π = πFI ||πII ||πFX . B forwards the command, answer, and proof parts to the
corresponding challengers. If A passes the VDSSE verification with non-negligible probability p, B can also
pass each of the HADS verifications with non-negligible probability p (breaking the HADS security).

Since the HADS is secure, p must be negligible, which means that A can break verifiability of the VDSSE
only with negligible probability. Therefore, if the underlying HADS schemes are secure, our VDSSE scheme
is verifiable.

Theorem 4 If SKE is a CPA-secure symmetric-key encryption scheme, the HADS is secure, F is a se-
cure PRF, and the hash functions H1 and H2 are modeled as random oracles, then our VDSSE scheme is
(LInit,LSrch,LBlSrch,LAddDel,LMod)-private against adaptive chosen-keyword attacks.

Proof 2 Overview: We construct a PPT simulator S who simulates the client in a way that is indistin-
guishable from the real client by any PPT distinguisher. The simulator starts by constructing a simulated
(encrypted) index I and a simulated version of the collection of encrypted files c. These simulated versions
are generated as randomly selected values, but the simulator uses the information provided by LInit to make
them similar to the real ones. The simulator needs the number of files, their sizes, the number of keywords
in each file, the number of keywords in the dictionary, and the number of files per keyword for a correct
simulation of the initial index. These are all given to the simulator in LInit. Since the values stored at the
forward and inverted indices are the outputs of PRFs, the simulator can select random values instead. The
PRF security guarantees that no PPT distinguisher can distinguish them. S uses the encryption of all-zero
strings of given sizes for the files; an action guaranteed to be indistinguishable by the CPA-security of the
encryption scheme used. The tokens are also simulated in a similar manner, except that S should keep a
local copy to keep the tokens consistent; the problem that is pointed out and solved first in [15], and later
in [13, 35]. She performs all simulation computations on her own local copy. Now, we detail the construc-
tion of such a PPT simulator S who adaptively simulates the encrypted files (ciphertexts), the indices, and
tokens. We refer to the encrypted keyword and file identifiers (i.e., FK1(id(wi)) and FK1(id(fj))) stored at
the first-level ADSs and are visible to the adversary, as eid(.). However, id(fj) refers to name under which
the file is stored at the server.
File index We discuss only the forward and inverted indices below. The first-level ADS of the file index

is the same as that of the inverted index; hence, they are simulated similarly. The second-level ADSs of
the file index are DPDP constructions that can be built like an honest client over the simulated encrypted
files.

Initialization The simulator, after generating K5 via KeyGen, builds some special internal data structures
required for performing simulation. FS is a vector of size n used for storing the random hash function
keys assigned to each file identifier (to be used at the related second-level ADS of the inverted index).
A similar vector of size m, WS, stores the random hash function keys assigned to the keywords. For
each keyword wi, a matrix WSwi of size fwi

× 3 is assigned to store the random keys and values and
randomnesses that are generated to build the FIwi . Similarly, for each file fj, a matrix FSfj of size wfj×
3 is assigned to store the random keys and values and randomnesses required for constructing the IIfj .
Moreover, two matrices WO and FO, that are empty at the outset, are used to answer the random oracle
queries for H1 and H2, respectively.
For each encrypted keyword and file identifier eid(.) given by LInit, S generates random k-bit hash function
keys ki and k′j and registers them in WS and FS, respectively (i.e., WS[eid(wi)] = ki and FS[eid(fj)] =
k′j). Moreover, for each keyword wi, |fwi

|-many l-bit random values keyfj and valfj (replacing (id(fj)⊕
H1

Kwi
(rj))) and k-bit random values rfj are generated and stored in WSwi

; i.e., {WSwi
[t][1] = keyfj ;

WSwi
[t][2] = valfj ;WSwi

[t][3] = rfj}
|fwi
|

t=1 . Similarly, for each file identifier fj, |wfj |-many l-bit random
values keywi

, 2l-bit random values valwi
(replacing [FK1

(id(wi))||keyfj] ⊕ H2
Kfj

(ri)) and k-bit random

values rwi
are generated and stored in FSfj ; i.e., {FSfj [t][1] = keywi

;FSfj [t][2] = valwi
;FSfj [t][3] =

rwi}
|wfj
|

t=1 . These values are indistinguishable for any PPT distinguisher, since the outputs of H1 and

25

H2 are random. To simulate each encrypted file fj ∈ f, she encrypts an all-zero string of length |fj | as
cj ← EncSKEK5(0|fj |)).
Now, she performs BuildIndex using these random values instead of the actual ones. Fi-
nally, she programs the random oracles to make these values consistent with future queries:

{WO[WS[eid(wi)]][WSwi [t][3]] = WSwi [t][2] ⊕ id(fjt)}
|fwi
|

t=1 and FO[FS[eid(fj)]][FSfj [t][3]] =

FSfj [t][2] ⊕ 〈eid(wit)||WSwit
[lt][1]〉}

|wfj
|

t=1 . Consistency means that the simulator generates search to-
kens in a way that the adversary observes the same set of file identifiers for the same keyword. If any
add, modify, and delete operation occurs in between, this is reflected correctly in the results the adversary
observes.

Simulating a single-keyword search token Using the information in the leakage function
LSrch(f, id(wi)) =(eid(wi), {eid(fj)}wi∈fj), the simulator finds the random value and key assigned
to eid(wi), and outputs the token as Ts = (eid(wi),WS[eid(wi)]), and programs WO to reflect the file
identifiers in the leakage as {WO[WS[eid(wi)]][WSwi

[lfj][3]] = WSwi
[lfj][2] ⊕ eid(fj)}eid(fj)∈LSrch

,
where lfj is the location of eid(fj) in WSwi

.
Simulating a Boolean search token The simulator takes the same steps as for one-keyword case for each

keyword in LBlSrch.
Simulating the add token The simulator updates her local data structures according to the information

in LAddDel(f, fj) = (eid(fj), |fj |, {eid(wi)}wi∈fj), in the same way as in initialization: She generates a
k-bit random hash function key for this file, registers it in FS, builds a second-level ADS containing all
keyword identifiers, and ties its root to the inverted index with the key eid(fj). She also adds eid(fj)
into the second-level ADS of all keywords in LAddDel. Finally, she outputs Ta = (eid(fj), {FSfj [t][1],
FSfj [t][2]||FSfj [t][3], eid(wit),WSwit

[lt][1],WSwit
[lt][2]||WSwit

[lt][3]}eid(wit)∈LAddDel
), where t is the lo-

cation of eid(wit) in FSfj and lt is the location of eid(fj) in WSwit
.

Simulating the delete token S uses the information in LAddDel(f, fj) = (eid(fj), |fj |, {eid(wi)}wi∈fj) to
check through FS if a hash function key is already assigned to eid(fj). If not, she first generates a new
k-bit random key k′j and sets FS[eid(fj)] = k′j. Then, she programs FO in a way that assigns the file
identifiers given by LAddDel to the random values in FSfj . Then, S deletes eid(fj) from the second-level
ADS of all given keywords (in the respective WSwi

s), removes FSfj , and deletes the cell indexed by
eid(fj) from FS. Finally, she outputs the delete token as Td = (eid(fj), FS[eid(fj)], id(fj)).

Simulating the modify token The simulator checks if a hash function key is already assigned to eid(fj).
If not, she first generates a new k-bit random key k′j and sets FS[eid(fj)]=k

′
j. Then, she sends the

FSfj [t][1] values corresponding to the keywords being deleted to the server, and receives the corresponding

randomnesses. The leakage LMod(f, fj)=(eid(fj), |fnewj |, {eid(wit)}
t1
t=1, {eid(wi′t

), ri′t}
t2
t=1) gives informa-

tion about the keywords being added or deleted. She updates the file accordingly and treats the newly-added
keywords as in add token generation. For the keywords to be deleted, she programs the corresponding
parts of the WO and FO accordingly, and sends FO[FS[eid(wi′t

)]][ri′t] for all these keywords in the token.
These steps bring the FS, WS, FO, WO, FSfj , and WSwi

s to a consistent and up-to-date state. Fi-
nally, she outputs Tm = (eid(fj), {FSfj [lt][1], FSfj [lt][2]||FSfj [lt][3], eid(wit),WSwit

[l′t][1],WSwit
[l′t][2]||

WSwit
[l′t][3]}t1t=1, {FSfj [i′t][1], FO[FS[eid(wi′t

)]][ri′t]}
t2
t=1, where lt, l

′
t, and i′t are indices of the file identi-

fier and its keywords to be added or deleted.
Answering random oracle queries In our simulation, add and modify operations always program the

random oracle matrices and make them ready for use. Therefore, search and delete operations always find
the required random oracle values inside matrices. H1 random oracle queries with key K and randomness
r is always responded with WO[K][r], and that of H2 is responded with FO[K][r].
All operations of the simulator are polynomial, making the total running time of the simulator polynomial

(since there will be at most polynomially-many adversary queries). Moreover, based on our assumptions, all
operations are performed by the simulator in a way that the adversary cannot distinguish them from what
the real client outputs.

26

B Security Proof in the Standard Model
The verifiability is exactly the same. Below, we present the simulation for our construction being private.

Proof 3 Overview: The idea and indistinguishability assumptions behind the proof is similar to the random
oracle model version. Now, we construct such a PPT simulator S who adaptively simulates the encrypted
files (ciphertexts), the indices, and tokens.
Initialization S uses the keys generated via KeyGen for building some special internal data structures re-

quired during simulation. For each eid(wi) given by LInit, S sets cntwi
= |fwi

|, i.e., the number of files
containing wi. For each file identifier eid(fj) given by LInit, S sets cntfj = |wfj |, i.e., the number of
keywords fj contains. Then, for each wi, she generates cntwi-many l-bit random valfj values, keeps
them in a vector WSwi

of size cntwi
, and uses them together with their l′-bit location numbers to build a

second-level ADS. The roots of these ADSs are used as values together with the respective keys eid(wi) to
build the first-level ADS of the forward index. Moreover, for each fj, she generates cntfj -many (2l+l′)-bit
random valwi values, stores them in a vector FSfj of size cntfj , and uses them together with their l′-bit
location numbers to build a second-level ADS. She uses the roots of these ADSs as values together with the
corresponding keys eid(fj) to build the first-level ADS of the inverted index. She also puts each encrypted
file in a DPDP structure and uses their roots as values together with eid(fj) as their keys to build the
first-level ADS of the file index.

Simulating a single-keyword search token Using the information in the leakage function
LSrch(f, wi) = (eid(wi), {eid(fj)}wi∈fj), the simulator creates another vector WAwi of size
cntwi and stores fwi

in WAwi in the order specified by LSrch. Then, she outputs the token as

Ts = (eid(wi), {WSwi
[t]⊕WAwi

[t]}cntwi
t=1).

Simulating a Boolean-search token The simulator takes similar steps for each keyword in LBlSrch.
Simulating the add token Using LAddDel(f, fj) = (eid(fj), |fj |, {eid(wi)}wi∈fj), the simulator first up-

dates her local data structures. She sets cntfj = |wfj |, stores wfj in FAfj and generates cntfj -many
(2l + l′)-bit random values, and puts them in FSfj . For each eid(wi) ∈ wfj , she increments the related
cntwi

by one, appends eid(fj) to the related WAwi
, and generates an l-bit random value valifj to be ap-

pended into WSwi . Finally, she outputs Ta = (eid(fj), {t, FSfj [t], eid(wit), cntwit
,WSwit

[cntwit
]}

cntfj
t=1),

where wit is the tth keyword in wfj .
Simulating the delete token Using LAddDel(f, fj) = (eid(fj), |fj |, {eid(wi)}wi∈fj), S first stores wfj in

FAfj and sets cntfj = |wfj |. Then, for each eid(wi) ∈ wfj , she puts NULL in the cells corresponding

to eid(fj) in the related WAwi . She finally outputs Td=(eid(fj), {FSfj [t] ⊕ 〈FAfj [t]||lt〉}
cntfj
t=1), where lt

is the location of FAfj [t] in the corresponding second-level ADS of the forward index, deletes FSfj and
FAfj , and sets cntfj =0. Note that the XOR is performed on the last (l + l′) bits of FSfj [t].

Simulating the modify token S sends the first l-bits of the FSfj [t] values corresponding to the key-
words being deleted to the server, who responds with their location in the related second-level
ADS. LMod(f, fj)=(eid(fj), |fnewj |, addSet={lt, eid(wit)}

t1
t=1, delSet = {l′t, eid(wi′t

)}t2t=1) gives informa-
tion about the list and location of keywords being added or removed. S first updates the file
and generates the DPDP update information. Then, if the respective FAfj does not exist, she
builds an empty FAfj of size cntfj , and stores inside it the added and deleted keyword’s identi-
fiers. She outputs Tm = (eid(fj), {lt, FSfj [lt], eid(wit), cntwit

, FSwit
[cntwit

]}lt∈addSet), {l′t, FSfj [l′t] ⊕
〈FAfj [l′t]||it〉}lt∈delSet), where its point to the locations of deleted keywords in the related WSwi . Finally,
she updates the corresponding cntwis, cntfj s, FSfj s, WSwis, FS, and WS accordingly.
All operations of the simulator are polynomial, making the total running time of the simulator polynomial

(since there will be at most polynomially-many adversary queries). Moreover, based on our assumptions, all
operations are performed by the simulator in a way that the adversary cannot distinguish them from what
the real client outputs.

27

C HADS Scheme Definition
The (H)ADS scheme is defined as the following polynomial-time algorithms [21]:

(sk, pk)← KeyGen(1k) is a probabilistic algorithm run by the client to generate a pair of private and public
keys (sk, pk) given as input the security parameter k. The client stores them locally and shares the
public key pk with the server.

(ans, π)← Certify(pk, cmd) run by the server to respond to commands coming from the client. It takes
the public key pk and command cmd as input. For query commands, it outputs a verification proof π
enabling the client to verify the validity of the answer ans. For update commands, the ans is null and
π is a consistency proof enabling the client to update her local metadata.

{accept, reject,M ′} ← Verify(sk, pk, ans, π,M) run by the client to verify the coming responses. It takes
as input the public and private keys (pk, sk), the answer ans, the proof π, and the client’s current
metadata M , and outputs an acceptance or a rejection signal based on the result of the verification.
If the command was update, and the proof is accepted, then the client updates her metadata (to M ′).

D DPDP Scheme Definition
The DPDP scheme is defined as the following efficient algorithms [18]:

{sk, pk} ← KeyGen(1k) is a probabilistic algorithm run by the client to generate the secret and public key
pair (sk, pk), which takes the security parameter as input. The client keeps the secret and public keys,
and sends the public key to the server.

{e(F), e(info), e(M)} ← PrepareUpdate(sk, pk, F, info,Mc) is an algorithm executed by the client to pre-
pare the file to be stored on the server. It takes as input the secret and public keys, the file F , the
definition info of the update to be performed, and the previous metadata Mc, and generates an en-
coded version of e(F), the information e(info) about the update, and the new metadata e(M). The
outputs are sent to the server.

{Fi,Mi,M
′
c, PM ′

c
}←PerformUpdate(pk, Fi−1,Mi−1, e(F), e(info), e(M)) is an algorithm executed by the

server upon receipt of an update request. The public key pk, the previous version of the file Fi−1,
the metadata Mi−1, and the outputs of the PrepareUpdate function are given as input. It generates
the new version of the file Fi, the metadata Mi, along with the metadata and its proof to be sent to
the client (M ′c and P ′Mc

).

{accept, reject} ← VerifyUpdate(sk, pk, F, info,Mc,M
′
c, PM ′

c
) run by the client to verify the server’s re-

sponse with inputs of PrepareUpdate algorithm, M ′c and P ′Mc
. It outputs an acceptance or a rejection

signal.

{c} ← Challenge(sk, pk,Mc) is a probabilistic algorithm run by the client to create a challenge to be sent
to the server. Given the secret and public keys, and the latest client metadata Mc as input, it generates
a challenge c.

{P} ← Prove(pk, Fi,Mi, c) run by the server upon receipt of a challenge, given the public key, the latest
version of the file and metadata, and the challenge. It generates a proof P to be sent to the client.

{accept, reject} ← Verify(sk, pk,Mc, c, P) is run by the client to verify the proof P from the server, given
the secret and public keys, the client metadata Mc, the challenge, and the proof P as input. The output
is an ‘accept’ that ideally means the server keeps storing the file intact, or a ‘reject’, otherwise.

E Detailed Construction of Our VDSSE

28

Listing 1. Our construction

Let SKE=(KeyGen,Enc,Dec) be a private-key encryption scheme, FI, II, and FX be HADS schemes with algorithms

(KeyGen,Certify,Verify), F : {0, 1}k × {0, 1}l′ → {0, 1}l be a PRF family, and H1 : {0, 1}k × {0, 1}k → {0, 1}l and

H2 : {0, 1}k × {0, 1}k → {0, 1}2l be hash function families modeled as random oracles, where l is the length of identifiers and
keywords, and k is the security parameter.

KeyGen(1k) Generate three random keys as Ki ← GenPRF(1k) for 1 ≤ i ≤ 3, KSKE ← SKE.KeyGen(1k), (pkFI , skFI) ←
FI.KeyGen(1k), (pkII , skII) ← II.KeyGen(1k), and (pkFX , skFX) ← FX.KeyGen(1k). Output pk = (pkFI , pkII , pkFX), sk =
(K1,K2,K3,KSKE , skFI , skII , skFX), and send pk to the server.

BuildIndex(sk, f) // w is the dictionary.

Building the forward index:
� For each wi ∈ w :

– Set Kwi = FK3
(id(wi)) and K′

wi
= FK2

(id(wi)).

– Find the set of file identifiers fwi ⊆ f containing wi.
– For each id(fj) ∈ fwi :

* keyfj = FK′
wi

(id(fj)).

* valfj = ((id(fj)⊕H1
Kwi

(rj)), rj).

– Build an authenticated skip list, FIwi , with (keyfj , valfj) as (key, value) and find its root Rwi .
� Construct the first-level authenticated skip list, FI, over |w|-many leaves, using FK1

(id(wi)) as key and Rwi as value at

each leaf. Call its root RFI .

Building the inverted index and the file index:
� For each fj ∈ f:

– cj = SKE.EncKSKE
(fj).

– Kfj = FK3 (id(fj)) and K′
fj

= FK2 (id(fj)).

– Find the set of distinct keyword identifiers wfj ⊆ w that appear in fj .

– For each id(wi) ∈ wfj :
* keywi = FK′

fj

(id(wi)).

* valwi = ([FK1
(id(wi))||keyfj]⊕H2

Kfj
(ri), ri).

– Build an authenticated skip list, IIfj , with (keywi , valwi) as (key, value) and find its root Rfj .

– Build a second-level ADS according to DPDP (or FlexDPDP) for cj and find its root RDPfj .

� Construct the first-level authenticated skip list, II, over |f|-many leaves, using FK1 (id(fj)) as key and Rfj as value at each
leaf. Call its root RII .

� Construct the first-level authenticated skip list, FX, over |f|-many leaves, using FK1
(id(fj)) as key and RDPfj as value at

each leaf. Call its root RFX .
� Set c = (c1, c2, ..., cn).

� Set I = (FI, {FIwi}wi∈w, II, {IIfj }fj∈f, FX, {RDPfj }fj∈f).

� Set M = (RFI , RII , RFX). // The local metadata

� Output (I, c,M). // I and c are sent to the server who stores them.

Dec(sk, cj) Output fj = SKE.DecKSKE
(cj).

SearchToken(sk,M,wi) Output Ts = (FK1 (id(wi)),Kwi).
Search(I, c, Ts) .
� Interpret Ts as (K1,K2).

� (Node, π1) = FI.Certify(pkFI , ‘Challenge K1’). // Find a node through the key K1.

� If Node = NULL then return ({}, π1). // The non-membership proof.

� Find the second-level ADS whose root is Node.val.

� For each leaf of this second-level ADS who stores (dj , rj):
– Decrypt each leaf value as id(fj) = dj ⊕H1

K2 (rj).

– Put the ciphertext with id(fj), i.e., cj , in cw.
� π2 = FX.Certify(pkFX , ‘Challenge cw’). // Integrity proof generation by the file index.

� Return (cw, π1||π2).

BooleanSearchToken(sk,M, φ(w1, ..., wt)) .
� Set Tb = φ(w1, ..., wt).

� Replace each wi ∈ Tb with (FK1
(id(wi)),Kwi).

� Output Tb.
BooleanSearch(I, c, Tb, ch) .

� Compute file identifiers satisfying Tb and corresponding proof, π1, as in Section 4.5.

� Put in cw ciphertexts of the file identifiers found.
� π2 = FX.Certify(pkFX , ‘Challenge cw’). // Integrity proof generation by the file index.

� Output (cw, π1||π2).

29

Listing 1. Our construction (Cont’d.)

AddToken(sk,M, fj) // fj has unique keywords (w1, ..., wt).
� cj = EncSPEKSKE

(fj).

� Ta = (FK1
(id(fj)), {keywi , valwi , FK1

(id(wi)), key
i
fj
, valifj

}ti=1).

� Prepare the corresponding file update information, infoAddcj , according to the HADS.
� Output (Ta, infoAddcj , cj).

Add(I, c, Ta, infoAddcj , cj) .

� c′ = c ∧ cj .
� Interpret Ta as (KI

fj
, {KI

wi
, V I

wi
,KF

wi
,KiFfj

, V iFfj
}ti=1).

� FX.Certify(pkFX , infoAddcj). // Put cj in a second-level ADS whose root will be RDPfj .

� π1 = FX.Certify(pkFX , ‘Add (KI
fj
, RDPfj)’). // Tie it to fj in the first level of FX.

� II.Certify(pkII , ‘Build {(KI
wi
, V I

wi
)}’). //Create an ADS with all keywords whose root is Rfj .

� π2 = II.Certify(pkII , ‘Add (KI
fj
, Rfj)’). // Tie it to fj in the first level of II.

� For each tuple in {KF
wi
,KiFfj

, V iFfj
}ti=1:

– Node = FI.Certify(pkFI , ‘Challenge KF
wi

’). // Locate wi in the first level of the FI.

– If Node = NULL // The keyword does not exist in the forward index.

* FI.Certify(pkFI , ‘Build (KiFfj
, V iFfj

)’). // Create an ADS whose root is Rwi.

* π3 = π3||FI.Certify(pkFI , ‘Add (KF
wi
, Rwi)’). // Tie it to wi in the first level of FI.

– Else
* FI.Certify(pkFI , ‘Add (KiFfj

, V iFfj
)’).// Add the file id to the second-level ADS found.

* π3 = π3||FI.Certify(pkFI , ‘Modify (KF
wi
, R′

wi
)’). // Apply the update in the first level.

� Output (the modified index I′, c′, π1||π2||π3).

DeleteToken(sk,M, id(fj)) :
� Output Td = (FK1

(id(f)),Kfj , id(fj)).

Delete(I, c, Td) :

� Interpret Td as (K1,K2, id(fj)).
� c′ = c \ cj .

� (Node, π1) = II.Certify(pkII , ‘Challenge (K1)’). // Find the leaf node with key K1 on II.

� If Node = NULL then return π1. // The non-membership proof.

� Find the second-level ADS whose root is Node.val.

� For each leaf of this second-level ADS who stores (dj , rj).

– Decrypt each leaf value as (id(wi),Kwi) = dj ⊕H2
K2 (rj).

– FI.Certify(pkFI , ‘Delete (id(wi),Kwi)’). // Delete a second-level node with key Kwi on FI.

– π2 = π2||FI.Certify(pkFI , ‘Modify (id(wi), R
′
wi

)’). // Deletion affects the first level of FI.

� π3 = II.Certify(pkII , ‘Delete (K1)’). // Delete K1 (with the second-level ADS) from II.

� π4 = FX.Certify(pkFX , ‘Delete (K1)’). // Delete K1 (with the second-level ADS) from FX.

� Output (the modified index I′, c′, π2||π3||π4).

ModifyToken(sk,M, id(fj),m) :
� Tm = (FK1

(id(fj)), {keywi , valwi , FK1
(id(wi)), key

i
fj
, valifj

}t1i=1, {keywi , H
2
Kfj

(ri)}t2j=1), where t1 and t2 are the number

of keywords being added and deleted.

� Prepare the corresponding update information, infoModfj , according to the HADS.
� Output (Tm, infoModfj).

Modify(I, c, Tm, infoModfj) :
� Update fj and achieve c′.
� Interpret Tm as (KI

f , {K
I
wi
, V I

wi
,KiFw ,K

′F
f , V iFf }

t1
i=1, {K′I

wi
, h′Iwi

}t2j=1).

� FX.Certify(pkFX , infoModcj). // Update the second-level ADS whose root is RDPfj .

� π1 = FX.Certify(pkFX , ‘Modify (KI
f , RDP

′
fj

)’). // Update the first-level ADS of FX.

� π2 = perform the add part as in the Add algorithm.

� π3 = perform the delete part as in the Delete algorithm.

� Output (the modified index I′, c′, π1||π2||π3).
Verify(sk, pk,M, cw, π) :

� Interpret π as πFI ||πII ||πFX .
� verFI = FI.Verify(skFI , pkFI , cw, πFI , RFI).
� verII = II.Verify(skII , pkII , cw, πII , RII).

� verFX = FX.Verify(skFX , pkFX , cw, πFX , RFX).

� If at least one of them shows rejection, output ‘reject’.
� If the operation was Search or BooleanSearch: check the list of received files against the identifiers in the proof, and output

‘reject’ for any mismatch.
� Update local state M accordingly and output ‘accept’.

30

F The Boolean Formula Proof Generation Algorithm

Algorithm 1: CompBooleanFID, run by the server.
Input: t second-level ADSs: ADS1...ADSt, their keys: K1...Kt, and literals: N1...Nt.
Output: List of file identifers FID, and the proof π.

// Assume that ADSs are given in increasing order of the number of leaves.

1 π = {};
2 Decrypt all values in leaves of the ADS1.

3 if N1 == ′¬′ then
4 FID = f− {fi|fi ∈ ADS1}.
5 else
6 FID = {fi|fi ∈ ADS1}.
7 π = {(fi, level)|fi ∈ ADS1}.
8 for each ADSi ∈ {ADS2, ..., ADSt} do
9 πi = FID′ = {};

// Each ADSi is encrypted with a different key. Decrypt them before comparison.

10 FIDi = {fj |fj = Dec(Ki, f
′
j) ∧ f ′j ∈ ADSi}.

11 for each fj ∈ FID do
12 if fj ∈ FIDi then
13 π′ = ADSi.GenMembershipProof(f ′j);

14 if Ni 6= ′¬′ then

15 FID′ = FID′ ∪ fj ;

16 else
17 π′ = ADSi.GenNonMembershipProof(f ′j);

18 if Ni == ′¬′ then
19 FID′ = FID′ ∪ fj ;

20 πi = πi||π′;

21 π = π||πi;
22 FID = FID′; //Consider only these selected identifiers for the next round, not all in FID.

Important: the FID size is decreasing as we progress.

23 return (FID, π);

31

