Secure computation enables participating parties to jointly compute a function over their inputs while keeping them private. Secret sharing plays an important role for maintaining privacy during the computation. In most schemes, secret sharing over the same finite field is normally utilized throughout all the steps in the secure computation. A major drawback of this “uniform” approach is that one has to set the size of the field to be as large as the maximum of all the lower bounds derived from all the steps in the protocol. This easily leads to a requirement for using a large field which, in turn, makes the protocol inefficient. In this paper, we propose a “non-uniform” approach: dynamically changing the fields so that they are suitable for each step of computation. At the core of our approach is a surprisingly simple method to extend the underlying field of a secret sharing
scheme, in a non-interactive manner, while maintaining the secret being shared. Using our approach, default computations can hence be done in a small field, which allows better efficiency, while one would extend to a larger field only at the necessary steps. As the main application of our technique, we show an improvement upon the recent actively secure protocol proposed by Chida et al. (Crypto’18). The improved protocol can handle a binary field, which enables XOR-free computation of a boolean circuit. Other applications include efficient (batch) equality check and consistency check protocols, which are useful for, e.g., password-based threshold authentication