Side-channel attacks, especially differential power analysis (DPA), pose a serious threat to cryptographic implementations deployed in a malicious environment. One way to counter side-channel attacks is to design cryptographic schemes to withstand them, an area that is covered amongst others by leakage resilient cryptography. So far, however, leakage resilient cryptography has predominantly focused on block cipher based designs, and insights in permutation based leakage resilient cryptography are scarce. In this work, we consider leakage resilience of the keyed duplex construction: we present a model for leakage resilient duplexing, derive a fine-grained bound on the security of the keyed duplex in said model, and map it to ideas of Taha and Schaumont (HOST 2014) and Dobraunig et al. (ToSC 2017) in order to use the duplex in a leakage resilient manner.